An EXAFS observation of Ag local structre of Ag(DMe-DCNQI)₂ photoproduct

Takeshi Miyamoto^{1,3}, Hironobu Niimi², Wang-Jae Chun^{2, 3}, Yuichiro Koike⁴ Hideyuki Sugawara⁵, Tamotsu Inabe⁵, Toshio Naito^{5, 6}, and Kiyotaka Asakura*^{1, 3} ¹Department of Quantuam Science and Engineering, Hokkaido Unversity, 21-10 Sapporo, 001-0021 ²CREST JST, 21-10 Sapporo, 001-0021³CRC, Hokkaido University, 21-10 Sapporo, 001-0021 ⁴PF-IMSS-KEK, Oho1-1, Tsukuba, 305-0801⁵Division of Chemistry, Graduate School of Science, Hokkaido University, 10- 8 Sapporo, 001-0021 ⁶CRIS, Hokkaido University, 21-10 Sapporo, 001-0021

Introduction

A charge transfer complex $Ag(DMe-DCNQI)_2$ ¹(DMe-DCNQI =2,5-dimethyl-*N*,*N*'- dicyanoquionediimine) shows one dimensional metallic conductivity at room temperature. (Figure 1) Its conductivity changes into semiconducting or insulating character by the irradiation of UV-Vis light.² This feature can apply to the fabrication of single-material devices made only from Ag(DMe-DCNQI)₂ by photolithography. We have investigated the structures of Ag(DMe-DCNQI)₂ and its photo-products by the analysis of Ag K-edge EXAFS to clarify the conductivity change mechanism. Here we will report the structure of the photoproduct with semiconducting conductivity.

Experimental

Ag(DMe-DCNQI)₂ was synthesized using a previously reported method.² A 200 W Hg/Xe lamp was used as a UV–vis light (200–1100 nm) source. Ag K-edge EXAFS measurements were carried out at NW10A in a transmission mode. The powder sample was cooled at 15K. We named the pristine state as α and the photoproduct with semiconducting conductivity as β .

Result and discussion

Figure 2 shows Ag K-edge EXAFS Fourier transforms of α and β . The first peak corresponds to the Ag-N bonds in cyano groups of Ag(DMe-DCNQI)₂ crystal. The second peak corresponds to the second nearest C atoms in the cyano groups. The second peak is enhanced due to the shadowing effect. The shape of the first peak of β spectrum is asymmetric compared to that of α spectrum. Moreover, the intensity of the first peak of β spectrum is lower than that of α spectrum. These features imply that the Ag-N bond in β state includes some distortions compared to the original Ag-N bond of α . Powder XRD measurements showed that diffraction peaks of β appeared almost at the same positions as those of α . This result suggests that the crystal structure of β is not remarkably different from α .

The asymmetry of the first peak of β is a key to determine the conductivity change mechanism. The distortions of DMe-DCNQI ligands around the Ag cations, induced by the irradiation of UV-Vis light. In another words, the irradiation causes the partial disorder in the DMe-DCNQI columns, which are the conduction

pathways in this material. The disorder in the columns may locally interrupt the conduction pathway; hence, it creates an activation energy for conduction, or a new band gap. We concluded that the local disorder is an important role in the conduction change into semiconducting properties.

NW10A/2006G059

Figure 1. (a) Molecular structure of DMe-DCNQI. (b) Crystal structure of $Ag(DMe-DCNQI)_2$ viewing down the stacking axis, i.e., c-axis.

Figure 2. Ag K-edge EXAFS Fourier transform spectra of Ag(DMe-DCNQI)₂ and its photo-product. (α) Ag(DMe-DCNQI)₂, α , and (β) photo-product, β , showing semiconducting conductivity.

References

1. A. Aumüller et al. Angew. Chem. Int. Ed. Engl. 25, 740 (1986)

2. T. Naito et al. Adv. Mater. 16, 1786 (2004)

* askr@cat.hokuai.ac.jp