Analysis of x-ray irradiation effect in high-\(k\) gate dielectrics by time-dependent photoemission spectroscopy using synchrotron radiation

Tatsuhiko TANIMURA\(^1\), Satoshi TOYODA\(^1\), Hiroshi KUMIGASHIRA\(^1,2\), Masaharu OSHIMA\(^1,2\), Kazuto IKEDA\(^3\), Guo-Lin LIU\(^3\), Ziyuan LIU\(^3\), and Koji USUDA\(^3\)

\(^1\)The University of Tokyo, Tokyo 113-8656, Japan
\(^2\), Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 113-8656, Japan
\(^3\)STARC, Kanagawa 222-0033, Japan

Introduction

Among high-\(k\) materials as alternates to SiO\(_2\), HfO\(_2\)-based dielectrics have one of the most desirable properties for gate insulators in complementary metal oxide semiconductor (CMOS) devices. However, since the barrier heights at the interface between HfO\(_2\)-based dielectric films and Si are relatively small, it is required to determine band offsets more precisely for accurate estimation of gate leakage current. Though photoemission spectroscopy (PES) is one of the most powerful methods to evaluate the band offsets of ultra thin films, x-ray irradiation itself for measurements hinders accurate determination of peak positions of PES spectra. For precise determination of band offsets, it is necessary to exclude the effect. In this study, we have performed x-ray irradiation time-dependent measurements of PES spectra with the temporal resolution of a few seconds using synchrotron radiation and accurately determined the band offsets of HfO\(_2\), HiSiO and HiSiON by eliminating the x-ray irradiation effect.

Experimental

The HfO\(_2\), HiSiO, and HiSiON layers were deposited on clean p-type Si (001) substrates by chemical vapour deposition (CVD). The thickness was estimated by the ellipsometry to be 2 nm for the HfO\(_2\) layer and 3.0 nm for the HiSiO and HiSiON layers. Poly-Si electrodes of 3 nm were deposited on HfO\(_2\) gate stacks at room temperature by magnetron sputtering. Photoemission spectroscopy was carried out at an undulator beam line BL-2C of the Photon Factory in High-Energy Accelerator Research Organization (KEK).

Results and Discussion

Figure 1 shows x-ray irradiation time dependence of Si \(2p\) core-level spectra in HiSiON/Si. Each spectrum was measured within a few seconds. It is observed that both oxide and substrate peaks are shifting toward lower binding energy with x-ray irradiation. However, a closer look at the initial stages reveals that peak positions shift toward higher binding energy for a few minutes. Figure 2 shows peak shifts of Si \(2p\) core-level photoemission spectra from Si substrates as a function of x-ray irradiation time for HfO\(_2\)/Si, HiSiO/Si and HiSiON/Si. All samples shows peak shifts toward higher binding energy at first, and then toward lower binding energy. Hi

![Fig. 1 Si 2p core-level spectra in HiSiON/Si as a function of x-ray irradiation time.](image)

![Fig. 2 Peak shifts of Si 2p core-level spectra for various high-\(k\) dielectrics as a function of x-ray irradiation time.](image)