Resonant X-ray Raman Scattering Study of TiO$_2$

Yasuhisa TEZUKA*, Toshiyuki SASAKI1, Yasuo FUJITA1, Takanori IWAMOTO1, Hitoshi OSAWA1, Toshiaki IWAZUMI3, Yasuhito ISOZUMI4

1Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
2JASRI/SPring-8, Kouto 1-1-1, Sayo-cho, Hyogo 679-5198, Japan
3Photon Factory, Institute of Materials Structure Science, 1-1 Oho, Tsukuba 305-0801, Japan
4Radioisotope Research Center, Kyoto University, Kyoto 606-8501, Japan

Introduction

Resonant X-ray Raman scattering (RXRS) spectra of TiO$_2$ (rutile) were observed around Ti K absorption edge. Preliminary results of TiO$_2$ as well as BaTiO$_3$ and Ti$_2$O$_3$ have been reported previously [1]. In this report, we compare the Raman spectra with Ti 2p XAS spectrum.

Experimental

Powder samples were used in this experiment. The experiments were performed at BL-7C and 15B1 of the Photon Factory, KEK. X-ray emission was analyzed by a cylindrically bent Ge (400) crystal [2]. The analyzed x-rays were detected by a position-sensitive proportional counter (PSPC).

Results and Discussions

Figure 1 shows Ti K absorption spectra (XAS) of TiO$_2$ and the inset shows pre-edge structure, which correspond to Ti 1s \rightarrow 3d transition [3]. Labels in the inset denote excitation energies in RXRS study.

Figure 2 shows RXRS spectra excited below the absorption edge (red). Labels beside the Raman spectra correspond to those in Fig.1. The RXRS spectra of TiO$_2$ show at least seven peaks (P1~P7).

Three peaks at higher energy (P5~P6) remain those intensity even at much lower excitation energy than absorption edge. The Raman spectrum of low energy excitation (a), which is almost regarded as non-resonant Raman spectrum, resembles to Ti K XAS spectrum (Fig.1). We think these peaks correspond to Ti 4p state in the unoccupied state; i.e. Raman scattering by Ti 2p \rightarrow 4p excitation. In such non-resonant condition, monopole transitions should be active.

Ti 2p XAS spectrum, which reflects Ti 3d state in unoccupied state, is shown at the top. As shown in spectrum b in Fig.2, Raman peaks at lower energy (P1~P4) are enhanced by the excitation just below the pre-edge structure of the Ti K XAS and the Raman spectrum become very similar to the Ti 2p XAS. Since the Ti 3d state would be enhanced by such an excitation energy, we think these Raman peaks correspond to unoccupied Ti 3d state, i.e. Raman scattering by Ti 2p \rightarrow 3d excitation. In such a resonant condition, dipole transitions, which are forbidden in normal condition, would become active.

References

* tezuka@cc.hirosaki-u.ac.jp