Electronic Structure of Condensed Matter

Ti 2p soft x-ray emission spectroscopy of Ti₂O₃

Hitoshi SATO^{1*}, Kenichiro TSUJI², Kunta YOSHIKAWA², Yasuhisa TEZUKA³, Shohei NISHIMOTO², Masayuki HIGASHI², Fumitoshi IGA⁴, Masami TSUBOTA⁵ and Masaki TANIGUCHI² ¹HiSOR, ²Graduate School of Science, ⁴ADSM, Hiroshima University, Higashi-Hiroshima ¹739-0046, ²739-8526, ⁴739-8520, Japan ³Graduate School of Science and Engineering, Hirosaki 036-8561, Japan ⁵JAERI/SPring-8, Hyogo 679-5148, Japan

Introduction

Ti₂O₃ exhibits a gradual metal (high-temperature phase) - insulator (low-temperature phase) transition (MIT) around 450 K. The Ti 3d levels in Ti₂O₃ split into the t_{2g} and e_g^{σ} levels. Due to the trigonally distorted crystal field, the t_{2g} level further splits into the e_g^{π} and a_{1g} levels. Tanaka has proposed a new MIT model taking into account the many-body effect and predicted that the Ti 3d configuration of the Ti ion pair along c-axis changes from $(a_{1g}\uparrow, a_{1g}\downarrow)$ in the insulating phase to $(a_{1g}\uparrow, e_g\pi\uparrow)$ in the metallic phase [1]. Recently, we have detected the 3d configuration change due to MIT by means of polarization-dependent Ti 2p-3d absorption spectroscopy [2]. In this study, we have measured Ti 3d-2p soft x-ray emission spectra (SXES) for Ti2O3 in order to derive the Ti 3d level splitting using the observed peak due to d-d* excitation.

Experimental

The Ti 3d-2p SXES experiments were carried out at BL-2C using a Rowland-type SXES spectrometer with depolarized configuration. Samples used for the present experiments were single crystal and the SXES spectra were measured with E//c and $E \perp c$ conditions, where E denotes a polarization vector of incidence light. Note that the Ti ion pair is parallel to the *c*-axis.

Results and discussion

As is well known, the Ti 3d-2p SXES spectra strongly depend on the excitation energy around the Ti 2p-3d absorption region because both the Raman and fluorescence components contribute to the spectra. As an example, the SXES spectra measured with E//c and $E \perp c$ conditions at room temperature (insulating phase) are shown in Fig. 1 as a function of the Raman shift. The excitation energy is just between the $2p_{3/2}$ -3d and $2p_{1/2}$ -3d absorption regions (see Fig. 1 of Ref. 2). The spectra exhibit two Raman peaks at 1.3 and 3.3 eV and two fluorescence structure at 5-20 eV, judging from the excitation energy dependence. The Raman peaks at 1.3 and 3.3 eV are attributed to the a_{1g} - e_g^{π} and a_{1g} - e_g^{σ} excitations, respectively. Elastic scattering peak is not observed because the elastic scattering is forbidden.

Except for the whole intensity, we recognize the clear E-dependence in the Raman peak at 3.3 eV. This peak is clearly observed in the E//c spectrum while is strongly suppressed in the $E \perp c$ spectrum. Such a behaviour of the

Fig. 1. SXES spectra of Ti_2O_3 at room temperature measured between the $2p_{3/2}$ -3*d* and $2p_{1/2}$ -3*d* absorption regions.

 $a_{1g}-e_g^{\sigma}$ -derived peak is qualitatively reproduced by the multiplet calculation in regard to the relative intensities of the two Raman peaks, which supports the attributions of the Raman peaks. These experimentally-derived level splitting energies are well reproduced by the DV-X α calculation [3]. If we assume that the Ti 3d configuration changes simply from the $(a_{1g} \uparrow, e_g^{\pi}\uparrow)$ to $(a_{1g} \uparrow, e_g^{\pi}\uparrow)$ at the MIT temperature, $\Delta E(a_{1g} - e_g^{\pi}) \sim 1.3$ eV leads to $J \sim \Delta E/3 \sim 0.4$ eV.

We have also SXES experiments at 520 K (metallic phase) and found that the elastic peak is observed only for the E//c spectra. This result is considered to reflect the Ti 3*d* configuration change due to MIT.

References

A. Tanaka, J. Phys. Soc. Jpn. 73, 152 (2004).
H. Sato et al., J. Phys. Soc. Jpn. 75, L053702 (2006).
H. Nakatsugawa and E. Iguchi, Phys. Rev. B 56, 12931 (1997).

*jinjin@hiroshima-u.ac.jp