Photoemission Spectroscopy of C₇₀ Fullerene-Peapod

Hiroyoshi ISHII*¹, Hidetsugu SHIOZAWA¹, Yuji NAKAYAMA¹, Shinichiro FUJIKI¹, Yasuhiro

TAKAYAMA¹, Tsuneaki MIYAHARA¹, Takeshi KODAMA¹, Shinzo SUZUKI¹, Yohji ACHIBA¹,

Masashi NAKATAKE², Tomohiko SAITOH³ and Hiromichi KATAURA⁴

Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

²HiSOR, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan

Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan

⁴National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan

Introduction

single-walled (SWCNT) carbon nanotube А encapsulating C70 fullerenes, has attracted much attention because of its nanoscale structure, which has the potential to drastically change the electronic properties of SWCNTs and C70 fullerenes. The band calculation was performed by Otani et al. [1]; it is expected that the lowest unoccupied states (LU) and the highest occupied states (HO) of the C₇₀ fullerene encapsulated in SWCNT are different from those in an isolated C70 molecule because of the orbital mixing between the nearly-freeelectron states of SWNTs and the π orbitals of C₇₀ fullerenes. In this study, we have measured the photoemission spectra of SWCNT and C70 fullerene peapod (C_{70} PPD) samples.

Experimental

The photoemission experiments were performed using synchrotron radiation at the beam line BL-11D of the Photon Factory, High Energy Accelerator Research Organization (KEK). The instrumental resolution was 50 meV. SWCNT samples were prepared by the laser vaporization method [2, 3]. The mean diameter of SWCNTs in C_{70} PPD sample is 1.4 nm.

Results and Discussion

Figure 1 shows the photoemission spectrum of the C_{70} PPD sample measured at hv=65 eV. The photoemission spectrum of the C_{70} PPD is, as a whole, similar to that of the SWCNT [2, 3].

The spectrum of the C_{70} fullerenes (C_{70} pea) inside the SWCNT was obtained by subtracting the empty SWCNT spectrum from the C_{70} PPD spectrum and is shown in the figure. The overall spectral features are very similar to those of the C_{70} solid spectrum. The peaks in the binding energy region between 3 eV and E_F correspond mostly to the π band structures of C_{70} fullerenes. The peak at the binding energy of 2.8 eV is due to the highest occupied state (HO). The structures at the binding energies above 8 eV correspond mostly to the σ band. The several peaks in the binding energy region between 3 eV and 8 eV are due to the mixture of the π and σ bands.

As shown in the figure, the HO peak position is nearly equal to the corresponding peak position in the C_{70} solid spectrum. According to the theoretical calculation performed by Otani *et al.* [1], the LU states of the C_{70} fullerene shift downward compared with those of an isolated C_{70} fullerene. If such a shift occurs, it is expected that the HO states shift downward compared with those of a C_{70} solid. For the present C_{70} PPD sample, however, the energy shift of HO states cannot be observed. It is concluded that the electronic states of C_{70} fullerenes inside SWCNT are very similar to those of a C_{70} solid.

References

[1] M. Otani et al., Phys. Rev. B 68, 125424 (2003).

[2] H. Shiozawa et al.: Phys. Rev. B 73, 075406 (2006).

[3] H. Ishii et al., Nature 426, 540 (2003).

Figure 1: Photoemission spectra of the C_{70} peapod sample (C_{70} PPD), C_{70} fullerenes in SWCNTs (C_{70} Pea) and C_{70} solid.

* h_ishii@tmu.ac.jp