Composition Dependence of Crystallized Lamellar Morphology Formed in Crystalline-Crystalline Diblock Copolymers

Hiroshi IKEDA, Keisuke ITO, and Shuichi NOJIMA* Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan

Introduction

We have investigated the morphology formed in double crystalline poly(ε -caprolactone)-*block*-polyethylene (PCL -*b*-PE) diblock copolymers with various compositions, and clarified the stability of the PE lamellar morphology against PCL crystallization as a function of the crystallinity of PE blocks χ_{PE} in the whole systems.

Experimental Section

Samples The molecular characteristics of PCL-*b*-PE used in this study are shown in Table 1. The volume fraction of PE blocks in PCL-*b*-PE changes from 0.86 to 0.25, which yields the variation of χ_{PE} from 0.19 to 0.02, leading to a large change in the stability of the PE lamellar morphology against PCL crystallization.

SR-SAXS Measurements The static SR-SAXS experiment was performed at beam line BL-10C. The accumulation time was 300 sec for each measurement. The background scattering and Lorentz factor were taken into account, and finally the relative intensity was obtained as a function of wave number $s (= (2/\lambda) \sin \theta, 2\theta)$. scattering angle and $\lambda = 0.1488$ nm). The peak position

Table 1 Molecular characteristics of PCL-b-PE used in	this study
Table 1 Molecular characteristics of PCL-0-PE used in	uns study

	<i>Mn</i> ^a	Mw/Mn	PCL:PE [°]	EB [°]	$T_{m,PCL}^{d}$	$T_{m,PE}^{d}$
E86	14,000	1.16	14:86 (vol.%) -	50 (°C)	103 (°C)
E73	16,000	1.13	27:73	-	55	102
E58 (A	1) 8,400	1.13	42:58	6 (mol%)	58	101
E49 (A	3) 18,000	1.18	51:49	5	59	100
E36	13,000	1.16	64:36	7	59	97
E31 (A	2) 11,000	1.09	69:31	6	59	99
E25	14,000	1.08	75:25	-	59	101

Fig. 1 SAXS intensities plotted against s for E49 at each temperature indicated. Open circles represent the scattering from the molten microdomain structure.

(or long period) and peak intensity were evaluated at each crystallization temperature T_c (15 °C < T_c < 90 °C).

Results and Discussion

Fig. 1 shows the SAXS curves for E49 at each temperature indicated. At 130 °C, where both blocks are amorphous, a couple of scattering peaks are observed, indicating that regular microdomains are formed in the melt. By quenching the sample into low T_c (between 15 and 45 °C), PE blocks crystallize first to form the PE lamellar morphology and subsequently PCL blocks start to crystallize from this morphology. As a result, we have various SAXS curves, in which the scattering peak is moderately diffused and the peak position depends intimately on T_c .

Fig. 2 shows the long period *L* of resulting morphology plotted against *Tc* for selected PCL-*b*-PE copolymers. *L* changes complicatedly with changing *Tc* for E49 and E25; *L* at *Tc* < 30 °C is equal to that of the PE lamellar morphology (at *Tc* = 60 ~ 85 °C) while it increases further with increasing *Tc* up to 45 °C. This difference arises from the difference in the crystallization mechanism of PCL blocks at each temperature. The boundary temperature *Tp* between two different morphologies can be evaluated from Fug. 2 as a temperature where *L* deviates from that of the PE lamellar morphology. However, *Tp* is almost constant (~ 33 °C) for PCL-*b*-PE with $\chi_{PE} < 0.10$ (E25 ~ E58), indicating that the PE lamellar morphology controls the crystallization of PCL blocks by an intermediate manner between glassy and rubbery confinements.

* snojima@polymer.titech.ac.jp

Fig. 2 The long period plotted against T_c for E73, E49, and E25. The boundary temperature T_p between different morphologies is shown by a red arrow.