7C, 10B, NW10A/2005G029

Effects of incorporation of Fe³⁺ into magnesium *ortho*-vanadate on the catalytic activity and the redox of vanadium species

Shigeru SUGIYAMA*^{1,2,3}, Takeshi OSAKA³, Yuuki HIRATA³, Yuki KONDO³, Ken-Ichiro SOTOWA^{1,2,3}, Toshihiro MORIGA^{1,3}

¹Department of Advanced Materials, Institute of Technology and Science, The University of

Tokushima, Minamijosanjima, Tokushima 770-8506, Japan

²Department of Geosphere Environment and Energy, Center for Frontier Research of Engineering,

The University of Tokushima, Minamijosanjima, Tokushima 770-8506, Japan

³Department of Chemical Science and Technology, The University of Tokushima, Minamijosanjima, Tokushima 770-8506, Japan

Introduction

Although magnesium vanadates (MgV₂O₆, Mg₂V₂O₇ and Mg₃V₂O₈) are active catalysts for the oxidative dehydrogenation of propane, Mg₃V₂O₈ (magnesium ortho-vanadate) is known to show the lowest activities among three vanadates [1]. Since Mg₃V₂O₈ is more stable than Mg₂V₂O₇, that is a catalyst with the highest activity among these three vanadates, the activity on magnesium ortho-vanadate and the related catalysts should be improved. In the present study, Fe³⁺ was incorporated into Mg₃V₂O₈ in order to enhance the catalytic activity. Furthermore the redox nature of vanadium species in the Fe³⁺-incorporated catalyst was also analyzed with XAFS.

Experimental

Magnesium ortho-vanadates incorporated with Fe³⁺, $Mg_{3(1-x)}Fe_{2x}V_2O_8$ with x=0, 0.025, 0.05 and 0.10 (described as x%-Fe-ortho-MgVO), were prepared from Mg(OH)₂, Fe(NO₃)₃⁹H₂O and NH₄VO₃. The preparation procedure was essentially identical to that reported by Sam *et al.* [1]. Fixed-bed continuous flow reactor operated at atmospheric pressure was employed for the catalyst activity test under the following conditions: T=723 K, W=0.5 g, $P(C_3H_8)=14.4$ kPa, $P(O_2)=4.1$ kPa and F=30 ml/min. X-ray absorption fine structure (XAFS) near V K-edge was measured (2.5 GeV) with a storage ring current of approximately 400 mA at the High Energy Research Organization. The X-rays were monochromatized with Si(111) at BL-7C station. The absorption spectra were observed using ionization chambers in a transmission mode.

Results and Discussion

With the incorporation of Fe^{3+} into $Mg_3V_2O_8$, the improvement of the conversion of propane from 4.8% on $Mg_3V_2O_8$ to 8.2% on 5%-Fe-ortho-MgVO together with the rather similar selectivity to propylene on un-doped and doped catalysts (62.3 and 61.0 %, respectively) were observed. It should be noted that the yield of propylene showed maximum on 5%-Fe-ortho-MgVO while 10%-Fe-ortho-MgVO was employed for various analyses due to an excess presence of vanadium species in the catalyst. In order to evaluate the redox nature of 10%-Fe-ortho-MgVO, the catalyst was reduced for 6 h under the conditions of T=723 K, W=0.5 g, P(C₃H₈)=14.4 kPa, $P(O_2)=0$ kPa and F=30 ml/min. After the analyses of the reduced catalyst with XAFS and the related analytical procedures, the reduced catalyst was re-oxidized with O₂ (25 ml/min) for 1 h at T=723 K. An evident V K-preedge peak was detected from XAFS analyses with the fresh and the re-oxidized catalysts while the pre-edge peak became smaller after the reduction of the fresh catalyst. The decrease in intensity of the V K-pre-edge peak indicates a reduction of V⁵⁺ species in the fresh catalyst to V⁴⁺ species in the reduced catalyst, the latter of which could be re-oxidized to V^{5+} by the O_2 treatment. Fourier transformation of the XAFS oscillation around the V K-edge of fresh and the re-oxidized 10%-Fe-ortho-MgVO showed that the nearest-neighbor distance V-O in the catalysts was both 0.173 nm. This distance is comparable distance (0.172 nm) in VO_4^{3-} anion, which is stable, as a regular tetrahedron [2], indicating that the V-O distance in the catalysts is a typical distance between V^{5+} and O²⁻. The reduction of 10%-Fe-ortho-MgVO resulted in the enlargement of the V-O distance to 0.183 nm. Based on the discussion using V K-pre-edge peak and the nearest-neighbor distance V-O, it is confirmed that facile redox proceeds during the oxidative dehydrogenation propane on magnesium ortho-vanadate incorporated with Fe^{3+} , resulted in the improvement of the catalytic activity. It should be noted that the redox nature of vanadium species confirmed by XAFS were also detected from the solid state ⁵¹V MAS NMR. Finally it is worthwhile to mention that such an improvement observed from the incorporation of Fe³⁺ into Mg₃V₂O₈ was not observed in incorporating reducible rare metal cations into Mg₃V₂O₈.

References

 D. S. H. Sam et al., J. Catal. 123, 417 (1990).
T. Tanaka et al., J. Chem. Soc. Faraday Trans. 1, 84 2987 (1988).

* sugiyama@chem.tokushima-u.ac.jp