Phase relation in the $Ca^{2+}Ti^{4+}O_3 - Y^{3+}Ga^{3+}O_3$ system

Satoko MOTAI, Takaya NAGAI^{*} and Yusuke SETO Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan

Introduction

The ABO₃ compounds with the perovskite structure have been focused due to their unique electro-optical, thermo-mechanical and catalytic properties. Materials with the perovskite structure are also important in geoscience, since MgSiO₃ perovskite is the most major constituent mineral in the Earth's lower mantle. Recent experimental studies indicated that Mg²⁺Si⁴⁺O₃ perovskite incorporates significant amount of trivalent cations such as Al^{3+} and Fe^{3+} [e.g.,1,2]. Because the perovskite structure can tolerate structural distortions within its framework, cations of variety of sizes and charges can occupy the A and B sites. Consequently the various physical and/or chemical properties could be changed depending on the chemical compositions. Thus, it is not surprising that the incorporation of trivalent cations into MgSiO₃ perovskite greatly influences on its elastic property [3]. However, it is unclear what kind of mechanism controls the incorporation of trivalent cations into $A^{2+}B^{4+}O_3$ perovskite. In the present study, we investigated the phase relation in the Ca²⁺Ti⁴⁺O₃-Y³⁺Ga³⁺O₃ system at atmospheric pressure, 1 GPa and 2 GPa. It is noted that CaTiO₃ perovskite is stable at atmospheric pressure. On the other hand, YGaO₃ perovskite is stabilized at a high pressre [4].

Experimental

Samples were synthesized from the oxide mixture using a muffle furnace at about 1720K and atmospheric pressure for more than 80 hours. High pressure synthesis was performed by using a piston-cylinder apparatus at about 1670K and 1GPa and 2GPa for 48 hours. The powder X-ray diffraction measurements were carried out at BL-18C in PF using an imaging plate. The incident Xray beam was monochromatized to wavelengths of 0.6161 Å and collimated to 100 µm in diameter. Twodimensional X-ray diffraction patterns were analyzed by the PDI software, which was originally programmed [5]. A scanning electron microscope (SEM, JEOL JSM-5310) equipped with an energy dispersive X-ray spectrometer (EDS, OXFORD LINK-ISIS) used to analyze microtexture and chemical compositions of the recovered samples.

Results and Discussion

Cations of $\overline{Y^{3+}}$ and $\overline{Ga^{3+}}$ are incorporated into $Ca^{2+}Ti^{4+}O_3$ perovskite as YGaO₃ component up to 40 mol % at atmospheric pressure. The solubility of YGaO₃ component greatly increases with pressure and about 80 mol % of YGaO₃ component could dissolve into CaTiO₃ perovskite (Fig.1). It is expected that a complete solid solution with the perovskite structure would occur in the

 $Ca^{2+}Ti^{4+}O_3-Y^{3+}Ga^{3+}O_3$ system at a higher pressure. The crystal structure of YGaO_3-bearing CaTiO_3 perovskite remains orthorhombic and the lattice parameters changes almost linearly as a function of the amount of YGaO_3 component (Fig.2).

Fig.1. Phase diagram of the $Ca^{2+}Ti^{4+}O_3 \cdot Y^{3+}Ga^{3+}O_3$ system at 1670 K. The horizontal axis represents mol% of YGaO₃ component.

Fig.2. Variation of the lattice parameters in the $Ca^{2+}Ti^{4+}O_3-Y^{3+}Ga^{3+}O_3$ system. The horizontal axis represents mol% of YGaO_3 component.

References

[1]D.J. Frost and F. Langenhorst, Earth Planet. Sci. Lett., 199, 227 (2002)

[2]D. Nishio-Hamane et al., Geophys. Res. Lett., 32, L16306 (2005)

[3]J. Zhang and D.J. Weidner, Science, 284, 782 (1999)
[4]M. Marezio et al., Materials Res. Bull., 1, 247 (1966)
[5] http://mineralx.ep.sci.hokudai.ac.jp/seto/

* nagai@mail.sci.hokudai.ac.jp