Materials

Simultaneous DSC-SAXS measurement of PEO-*b*-PMA(Bza) copolymers

Shouichirou NISHIKAWA¹, Takeshi YAMADA¹, Hirohisa YOSHIDA^{1,2} ¹Graduate School of Urban Environmental Science, Tokyo Metropolitan University, Hachiouji, Tokyo 192-0397, Japan, ²JST (CREST)

Introduction

Side-chain type liquid crystal-amphiphilic di-block copolymers form nano-scale phase separation at an equilibrium state. We have reported the phase transitions and the nano-scale order structure of di-brock copolymer consisted of hydrophilic poly (ethylene oxide) (PEO) and hydrophobic poly (methacrylate) derivatives (PMA(R)) containing liquid crystalline mesogen unit (R) as an ester group[1-3]. In the case of copolymer having azobenzene as a mesogenic unit, both smectic C and A were observed on heating by the simultaneous DSC-SAXS measurement. In this study, we have investigated the nano-scale structure and liquid crystalline phase of amphiphilic di-block copolymer having benzylideneamine (Bza), besides azobenzene and stylbene, PEO₁₁₄-*b*-PMA(Bza)_n.

Experiments

PEO₁₁₄-*b*-PMA(Bza)_n used through the experiments was prepared by the atom transfer radical polymerization. The degree of polymerization of PMA(Bza), n, was determined by ¹H-MNR, and .the molecular weight disparity determined by GPC was less than 1.1. *Experiments*

The simultaneous DSC-SAXS measurements [4] were performed by SAXS optics at BL-10C, PF, KEK. The wavelength of X-ray and the measurement range of scattering vector were 0.1488 nm and 0.06 nm⁻¹ < q (= $4\pi \sin\theta/\lambda$) < 3 nm⁻¹, respectively. DSC scanning rate and XRD time resolution were 2 K min⁻¹ and 30 sec, respectively.

<u>Results</u>

Nano phase separation structure

The SAXS profile changes of PEO₁₁₄-*b*-PMA(Bza)₇₃ obtained by DSC-SAXS on heating was shown in Fig.1. DSC indicated three endothermic peaks at 38.5, 78.5 and 127.3 °C, the endothermic peak at 38.5 °C was assigned to the melting of PEO segment. The SAXS profiles of PEO₁₁₄-b-PMA(Bza)_n showed the scattering peaks in the q range from 0.3 to 1.0 nm⁻¹, these peaks (at q*, 3^{1/2}q* and 2q*) indicated the hexagonal packed cylinder structure for PEO₁₁₄-*b*-PMA(Bza)_n with n = 38 – 73. The scattering peaks at q*, 3^{1/2}q* and 2q* became weak above the melting of PEO, and the peaks at q*, 3^{1/2}q*and 2q* appeared again at 120 °C. These nano-scale structures observed at various temperatures were almost the same with those of PEO₁₁₄-*b*-PMA(Az)_n, which contained azobenene moieties as liquid crystalline mesogen [2, 3].

Liquid crystalline phase

In Fig.1, the scattering peak at 1.8 nm⁻¹ was corresponded to the smectic layer of hydrophobic PMA(Bza) domain. The smectic layer distance (d_1) was constant below the melting temperature of PEO, and decreased in the temperature range from 70 to 120 °C, and this scattering peak disappeared at the endothermic DSC peak at 127.3 °C. From this result, the endothermic DSC peak at 127.3 °C was assigned as the isotropic transition of PEO_{114} -*b*-PMA(Bza)₇₃. In the case of azobenzene as liquid crystalline mesogen, two types of smectic phase, S_mC and S_mA were observed and the transition between S_mC and S_mA was measured thermo-reversibly. However, PEO_{114} -*b*-PMA(Bza)₇₃ showed only S_mA phase, because the d_{L} was matched with the molecular length [5]. Moreover we will investigate the effect on liquid crystal phase by the difference from liquid crystalline mesogens.

Fig.1 SAXS profile change of PEO₁₁₄-b-PMA(Bza)₇₃ on heating

<u>References</u>

[1] H. Yoshida et al., *Trans. Mat. Res. Soc. Japan*, **29**, 861 (2004).

[2] T. Yamada et al., *Trans. Mat. Res. Soc. Japan*, **30**, 675 (2005).

[3] S. Y. Jung et al., *Colloids & Surface A*, **284-285**, 305 (2006)

[4] H. Yoshida et al., *Thermochimica Acta*, **264**, 173 (1995)

[5] Y.Tian etal, *Macromolecules*, **35**, 37392, (2002)

* yoshida-hirohisa@tmu.ac.jp