6C/2005G157,2005G158,2006G263,2006G264 Crystal structural change in $Ce_{0.4}Zr_{0.6}O_2$ solid solution through synchrotron powder diffraction data

Takahiro Wakita¹, Masatomo Yashima^{1,*}, Takayuki Tsuji¹, Toshikazu Ueda¹, Yoichi Kawaike¹, Takafumi Komatsu¹, Yong Phat¹, Roushown Ali^{1,2}, Yoshitaka Matsushita² ¹ Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8502;² National Institute for Materials Science, Sengen 1-2-1, Tsukuba, 305-0047

Introduction

Three-way catalyst has been known to oxidize CO and HC, and to reduce NOx at the same time. CeO₂-ZrO₂ solid solutions are used as the subcatalysts for automotive exhaust gases. purification of The development of CeO₂-ZrO₂ catalysts requires a better understanding of the crystal structure and structural change.The crystal structure of the CeO2-ZrO2 solid solutions has been investigated by Yashima et al. [1-6]. They reported the existence of three metastable tetragonal forms of t, t' and t''. The three tetragonal forms belong to the $P4_2/nmc$ space group. However, the crystal change in $Ce_{0.4}Zr_{0.6}O_2$ at high temperatures has not been investigated in-situ yet. The purpose of this study is to investigate the structural change in the $Ce_{0.4}Zr_{0.6}O_2$ solid solution between 296 K and 1790 K using the synchrotron powder diffraction data.

Experiment

Synchrotron powder diffraction experiment was conducted using a three-axis four circle diffractometer installed at the beam line BL-6C of the Photon Factory, KEK, Japan. Monochromatized 0.89679(10) Å X-ray was used for the diffraction experiment. A furnace with MoSi₂ heaters [7] was placed on the sample table, and used for synchrotron x-ray diffraction measurements at high temperatures. Individual profile fits were performed for the powder data using a profile-fitting program PRO-FIT [8].

Results and discussion

Fig. 1 shows the synchrotron x-ray diffraction profiles of the Ce_{0.4}Zr_{0.6}O₂ solid solution measured at 1609, 1745 and 1790 K. All reflections are indexed by a tetragonal cell (P4₂/nmc) between 1609 K and 1745 K. The peak splitting between the $004_{t'}$ and $220_{t'}$ reflections was clearly observed between 1609 K and 1745 K (Fig. 1a and b). All reflections in the synchrotron x-ray diffraction profile measured at 1790 K are indexed by a cubic fluorite-type cell ($Fm \overline{3}m$; Fig. 1c). The 400_c reflection exhibits a single feature without splitting between the $004_{t'}$ and $220_{t'}$ reflections. The Ce_{0.4}Zr_{0.6}O₂ solid solution was found to transform from the tetragonal t' to cubic phase between 1745 K and 1790 K.

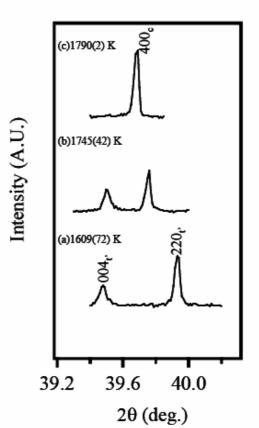


Fig.1 Synchrotron x-ray diffraction profiles for 004t, $220_{t'}$ and 400_{c} peaks of the Ce_{0.4}Zr_{0.6}O₂.

References

- [1] M. Yashima et al., J. Am. Ceram. Soc. 76 (1993) 1745.
- [2] M. Yashima et al., J. Am. Ceram. Soc. 76 (1993) 2865.
- [3] M. Yashima et al., J. Am. Ceram. Soc. 77 (1994) 1067.
- [4] M. Yashima et al., J. Am. Ceram. Soc. 77 (1994) 1869.
- [5] M. Yashima et al., Appl. Phys. Lett. 72 (1998) 182.
- [6] T. Wakita & M. Yashima, Acta Cryst. B 65 (2007)
- 384. [7] M. Yashima et al., J. Appl. Cryst. 37 (2004) 786.
- [8] H. Toraya, J. Appl. Cryst. 19 (1986) 440.