# The ability of XSTRIP as a detector for the time-resolve DXAFS measurement

Yasuhiro NIWA<sup>1\*</sup>, Yasuhiro INADA<sup>1</sup>, Yasuhiro IWASAWA<sup>2</sup>, Masaharu NOMURA<sup>1</sup> <sup>1</sup>KEK-PF, Tsukuba, Ibaraki 305-0801, Japan <sup>2</sup> Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

### **Introduction**

XSTRIP is a silicon miscrostrip X-ray detector system developed in Daresbury Laboratory [1], and it has been installed in NW2A beamline of PF-AR. The detail of its composition and fundamental performance were reported at elsewhere [2]. We succeeded in measuring a XAFS spectrum by only one pulse of X-ray at that time, and we have carried out some further DXAFS measurements using the XSTRIP detector to improve the quality of the XAFS spectra by one pulse of X-ray.

## **Experiments**

The DXAFS measurements of Ni foil (5  $\mu$ m thickness) were carried out at NW2A beamline using an Si(111) bent crystal (Bragg-type) polychromator with the bending radius of 2 m. The bunch revolution signal of 794 kHz at PF-AR was delayed and used as the trigger for starting the XSTRIP scan to synchronize the scan with the X-ray pulse. The delay time between the bunch revolution and the trigger signals was adjusted to get the maximum intensity of X-ray. The XAFS spectra of Ni foil were measured for various accumulation numbers.

### **Results and Discussion**

The XAFS spectra and the EXAFS functions of Ni foil (5 µm thickness) are shown in figure 1 and 2, respectively. The exposure time of the XSTRIP detector was 0.9 µs, corresponding to that only one X-ray pulse irradiated during the one exposure frame. The accumulation number of spectrum a in figure 1 is 1, and it corresponds to the spectrum obtained by only one X-ray pulse. This means that the time-resolution of this spectrum is equivalent to the width of one X-ray pulse (ca. 70-100 ps). The EXAFS functions in figure 2 were extracted from the XAFS spectra smoothed. Although the signal-to-noise (S/N) ratio of spectrum a is insufficient to analyze the EXAFS data, the characteristics to the Ni foil can be clearly observed. The S/N ratio of the spectrum c, whose accumulation number was 9, has been drastically improved and it can be analyzed to obtain the local structure parameters. If a reaction system is reversible or can be repeated at least 10 times, it is possible to perform the time-resolved applications in sub-nano second time region by means of the XSTRIP detector.

This study demonstrates the ability of XSTRIP as a linear detector for the DXAFS measurements. Because a very good spectrum can be obtained for much longer exposure time, such as 100  $\mu$ s, the XSTRIP detector is very powerful not only for the ultra-fast XAFS measurements but also for conventional DXAFS applications.



Fig. 1. XAFS spectra of Ni foil (5 $\mu$ m thickness). The exposure time is 0.9  $\mu$ s, and the accumulation number is 1 (a), 4 (b), 9 (c), 25 (d) and 100 (e). The spectrum f is obtained by conventional step scan measurement.



Fig. 2. EXAFS functions of Ni foil ( $5\mu$ m thickness). The abbreviations are the same meanings with Fig. 1. The functions except for f are obtained from the XAFS spectra smoothed.

### **References**

[1] J. Headspith et al., Nucl. Instrum. Methods. Phys. Res. A, 512, 239 (2003).

[2] Y. Niwa et al., Photon Factory Activity Report 2005, #23 part B, 253 (2006).

\* yasuhiro.niwa@kek.jp