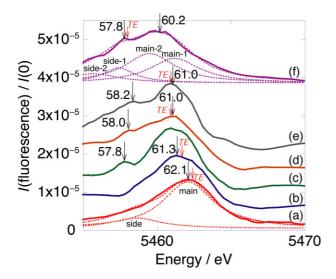
7C/2006G097

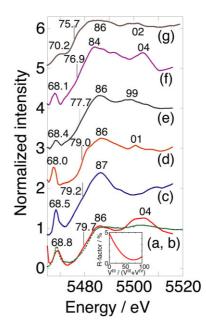
On-reaction, state-selective vanadium $K\beta_{5,2}$ -selecting XAFS elucidated oxidative dehydrogenation reaction mechanism under visible light

Yasuo Izumi^{1,*}, Kazushi Konishi¹ and Hideaki Yoshitake² ¹Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, ²Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501

Introduction


The feasibility [1] and the application to each reaction step [2] of state-selective vanadium $K\beta_{52}$ -selecting XAFS were reported. In this report, the monitoring was performed under *on-reaction* (*in situ*) condition over V-TiO₂ with uniform mesopores under visible light (> 420 nm).

<u>Methods</u>


The synthesis of sample and the measurements of stateselective V K $\beta_{5,2}$ -selecting XAFS were described in recent papers [3,4]. V-TiO₂ with uniform mesopores (3 nm) was synthesized using dedecylamine as template. Homemade X-ray fluorescence analyzer equipped with Johann-type Ge(422) crystal was used to tune to fixed emission energies around V K $\beta_{5,2}$ emission peak.

Results and discussion

The V sites of mesoporous V-TiO₂ sample were gradually reduced from V^{IV} to V^{III} upon water adsorption or ethanol under visible light (Figure 1). The reduction

Figure 1. V K $\beta_{5,2}$ emission spectra for mesoporous V-TiO₂ as (a) fresh, (b) in 0.37 kPa of water, and (c – f) in 4.3 kPa of ethanol under visible light for 1.2 (c), 3.3 (d), 11.9 (e), and 22.4 h (f). The excitation energy was set to 5483.6 eV. Spectrum deconvolutions were depicted as dotted lines with Lorentz functions for spectra a and f. The longer/black and shorter/red arrows indicate peak top and tune energy for the measurements in Figure 2, respectively.

Figure 2. V K $\beta_{5,2}$ -selecting V K-edge XANES spectra for mesoporous V-TiO₂ as (a, solid line) fresh, (c) in 0.37 kPa of water, and (d – f) in 4.3 kPa of ethanol under visible light for 7.0 (d), 17.3 (e), and 27.7 h (f) and for V₂O₃ diluted with boron nitride (3.0 wt% V; g). The tune energy values were 5462.4, 5461.7, 5460.9, 5460.9, 5458.0, and 5458.7 eV, respectively. Spectrum-b (dotted line) was corresponding data to spectrum-a, measured in transmission mode.

rate (14 µmol-V h⁻¹ g_{cat}⁻¹) corresponded to steady ethanol oxidative dehydrogenation to acetaldehyde (23 µmol h⁻¹ g_{cat}⁻¹). V K $\beta_{5,2}$ -selecting XAFS confirmed this correlation and the presence of 75% of V^{III} sites in mesoporous V-TiO₂ under visible light for 27.7 h. The V^{III} site geometry was found to resemble that of V^{III}₂O₃.

References

- Y. Izumi, K. Konishi, T. Miyajima, H. Yoshitake, *Photon Factory Act. Rep.* 24B, 20 (2007).
- [2] Y. Izumi, K. Konishi, T. Miyajima, H. Yoshitake, *Photon Factory Act. Rep.* 24B, 25 (2007).
- [3] Y. Izumi, K. Konishi, D. M. Obaid, T. Miyajima, H. Yoshitake, *Anal. Chem.* **79**(18), 6933 – 6940 (2007).
- [4] Y. Izumi, K. Konishi, H. Yoshitake, Bull. Chem. Soc. Jpn., in final reviewing process.

* yizumi@faculty.chiba-u.jp