XAFS analysis on molten lithium - zirconium fluorides

Haruaki MATSUURA^{*1}, Yusuke KITTAKA¹, Tomohiko SHIBATA¹, Catherine BESSADA², Anne-Laure ROLLET², Didier ZANGHI², Yoshihiro OKAMOTO³ ¹Res. Lab. for Nucl. Reactors, Tokyo Tech., Ookayama, Meguro-ku, Tokyo, 152-8550, Japan ²CRMHT, CNRS, 1D, Avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France ³Synchr. Rad. Res. Center, JAEA, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan

Introduction

Molten fluorides have still fascinating features to be applied to pyro-metallurgical processing as well as molten salt reactors, however, the material limitation for resisting long period is the most crucial disadvantage. Generally, molten fluorides can dissolve easily certain amount of oxide, which causes several problems under operation of processes, thus it is very essential to control the oxide contents in the melt. Recently, we have started a joint collaboration research project focused on the local structure around zirconium ions in fluorides, which is one We are planning to of candidates for melt baths. elucidate the variation of the local structures of these melts by multi-spectroscopic techniques, e.g. NMR and EXAFS, complementary. EXAFS spectra of LiF-ZrF₄ systems (x_{7-E4} =0.15, 0.25, 0.30) at various temperatures have been collected.

Experimental

Various ratios of chemicals were mixed with boron nitride matrix powder homogeneously, pressed into pellets, and inserted inbetween the specially designed boron nitride

Fig. 1 EXAFS oscillations of ZrF_4 -LiF (x_{ZrF4} =0.3) at high temperature

holders [1] under argon circulated glove box. A sample was installed in an electric furnace located between ionization chambers. Transmitted XAFS spectra have been collected, using Si (111) double crystals monochromator at Zr-K X-ray absorption edge.

Results and discussion

EXAFS oscillations of ZrF_4 -LiF (x_{ZrF4} =0.3) at various temperatures equilibrated are shown in Fig. 1. From this figure, even less than 550°C, drastic local structural transformation occurs already, which would he corresponding to the evolution of crystallographic phases of Li_2ZrF_6 and Li_3ZrF_7 compounds. Over this temperature, it seems almost nothing happens from the point of view from Zr local environment even in liquid phase. It means the local structure of solid state is kept in molten phase. This feature is much clarified in Fig. 2, which is depicted Fourier transformed structure functions of the spectra of different composition at highest temperatures. Even the temperatures are different, these functions are very close to each other, that shows the local structures at high temperature are independent from Zr concentration in the range of compositions measured.

Fig. 2 Structure functions of various ZrF_4 contents at highest temperatures.

References

[1] A. –L. Rollet et al., NIMB, 226, 447 (2004).* hmatsuur@nr.titech.ac.jp