9A, 9C/2007G061

Structural requisites for selective butanol synthesis over Rh-Mo/FSM-16 studied by EXAFS

Yasuo Izumi* and Kazushi Konishi

Department of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522

Introduction

Butanol selectivity of 100 - 30% was reported over Rh-Mo/FSM-16 catalysts in propene hydroformylation [1]. The Rh and Mo K-edge EXAFS analyses for Rh-Mo/FSM-16 catalysts were reported [2]. Rh/FSM-16 still exhibited specific butanol synthesis of 73 - 46% in propene hydroformylation [1] and thus the Rh K-edge EXAFS spectra were analyzed in this report to specify the structural requisites for selective butanol synthesis.

Methods

The $[Rh^{1}(COD)_{2}]^{\dagger}[BF_{4}]^{-}(COD = cyclooctadiene)$ was synthesized from $[RhCl(COD)]_{2}$, 1,5-COD, and AgBF₄. Obtained dark red crystal powder was dissolved in ethanol in an argon atmosphere and mixed with FSM-16. Separately, $RhCl_{3} \cdot 3H_{2}O$ was impregnated in/on FSM-16 from the aqueous solution.

Hydroformylation reactions of propene were carried out in closed system of 132 cm³ at total pressure of 60 kPa of propene, CO, and H₂ with molar ratio 1:1:1. Catalysts prepared from metal complexes were evacuated at 290 K for 2 h before catalytic tests. RhCl₃/FSM-16 catalysts were heated in hydrogen (27 kPa) at 673 K for 1 h and evacuated at 673 K for 30 min before tests.

Results and discussion

The Rh K-edge EXAFS analysis result for $[Rh^{1}(COD)_{2}]^{+}/FSM-16$ was listed in Table 1A. The coordination of the Rh complex to internal surface of FSM-16 was suggested via two Rh–O bonds. The catalyst was selective to propane and unimportant.

The Rh K-edge EXAFS was analyzed for RhCl₃/FSM-16 after hydroformylation at 433 K for 5 h (Table 1B). The Rh–Rh coordination number of 7.3 and 7.7 was

Figure 1. Proposed mechanism of selective butanol synthesis over Rh[-Mo]/FSM-16 catalysts.

consistent with nanoparticle mean size of 2.2 and 2.8 nm for the samples of 0.5 and 33 wt% of Rh, respectively, based on transmission electron microscope images.

Combined with Rh and Mo K-edge EXAFS analyses [2], structural requisites for the selective butanol synthesis were found to

- (1) the presence of Rh nanoparticles of $\approx 2 \text{ nm}$
- (2) additional effects of atomic Mo dissolved in Rh nanoparticles to segregate Rh atoms ensemble and favor the CO insertion step
- (3) slow diffusion of oxygenates intermediates in FSM-16 mesopores leading to multiple-step hydrogenations to convert finally to butanol.

References

- Y. Izumi, K. Konishi, M. Tsukahara, D. M. Obaid, K. Aika, J. Phys. Chem. C 111(27), 10073 – 10081 (2007).
- [2] Y. Izumi, K. Konishi, M. Tsukahara, *Photon Factory Act. Rep. 2006* 24B, 15 (2007).
- * yizumi@faculty.chiba-u.jp

Table 1.	Best F	it Results t	o Rhodium	K-edge	EXAFS	for Some	Rhodium	Catalysts	Supported	in/on FSM-16
				<u> </u>						

	Rh–O		Rh–C		Rh(-C	C-)C	Rh–Rh	
Rh wt%	N	$R(\text{\AA})$	N	R(Å)	N	R(Å)	N	R(Å)
(A) Before H	ydroform	ylation						
$[Rh(COD)_{2}]^{+}/$	FSM-16	•						
1.1	2.0	2.04	8.0^{a}	2.09	8.0^{a}	2.99		
(B) After Hyd RhCl ₃ /FSM-10 0.5 33	droformy 6	lation (43	3 K, 5h)				7.3 7.7	2.686 2.685

^{*a*} Equalized to the values for $[Rh(COD)_2]^+[BF_4]^-$.