1C/2002S2-002, 2005S2-002

Systematic tight-binding analysis of ARPES spectra of transition-metal oxides

Hiroki WADATI^{*1}, Akira CHIKAMATSU², Masaru TAKIZAWA³, Hiroshi KUMIGASHIRA^{2,4}, Teppei YOSHIDA³, Takashi MIZOKAWA⁵, Atsushi FUJIMORI³, Masaharu OSHIMA^{2,4}, Noriaki HAMADA⁶, Ilya ELFIMOV¹, George A. SAWATZKY¹ ¹Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada ²Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656, Japan ³Department of Physics, University of Tokyo, Tokyo 113-8656, Japan ⁴CREST, Japan Science and Technology Agency, Tokyo 113-8656, Japan ⁵Department of Complexity Science and Engineering, University of Tokyo, Chiba 277-8561, Japan ⁶Department of Physics, Tokyo University of Science, Chiba 278-8510, Japan

Introduction

3d transition-metal (TM) oxides have attracted a lot of interest in these decades because of their intriguing physical properties such as metal-insulator transition, colossal magnetoresistance, and ordering of spin, charge, and orbitals [1]. In order to understand the properties of these systems, the determination of band dispersions by angle-resolved photoemission spectroscopy (ARPES) has been highly required. Recent technological development has made it possible to grow high-quality single-crystal thin films using the pulsed laser deposition method, and a setup has been developed for their film growth followed by in-situ photoemission measurements [2]. We have analyzed the ARPES data recently accumulated for various 3d TM oxides of perovskite structures [SrTiO₂ [3], SrVO₂ [4], La₁ Sr MnO₂ [5], Pr₁ Ca₂MnO₂ [6] and La₁ $_x$ Sr $_x$ FeO₃ [7]] by a nearest-neighbor tight-binding (TB) model [8], and obtained a systematic variation of the electronic structure of the periodic lattice of 3d TM atoms. We compared the obtained parameter values with those obtained by fitting the local-density-approximation (LDA) band structure to the same TB model and those from configuration-interaction (CI) cluster-model theory.

Experiment and calculation

All the ARPES measurements presented in this report were performed using a photoemission spectroscopy system combined with a laser molecular beam epitaxy chamber at beamline BL-1C of the Photon Factory, KEK [2]. Details of the experimental conditions for the respective materials were described in Refs. [3-7]. The LDA band-structure calculations were performed using the linearized augmented plane wave method implemented in the WIEN2K package. We assumed a cubic paramagnetic state. In the CI cluster-model calculations [1], we considered a TMO₆ octahedral cluster.

Results and Discussion

Figure 1 shows the comparison of the variation of $|(pd\sigma)|$ [panel (a)] and \mathcal{E}_{d} (the effective energy level of TM 3*d* orbitals relative to that of O 2*p* orbitals) [panel (b)] in ARPES, LDA, and CI theory. As seen from Fig. 1 (a), the

values of $(pd\sigma)$ are similar in all the three estimates, meaning that as for the strength of *p*-*d* hybridization the values from the local CI cluster-model theory can describe the band structures of periodic systems. The behaviors of ε_a are not similar among the three estimates as shown in Fig. 1. The values of ε_a in the LDA calculation are a little smaller than those in ARPES due to the tendency of LDA to underestimate the binding energies of the O 2p bands. The values of ε_a from CI theory are much smaller than those from ARPES except for the case of Ti. We attribute this difference to the effective nature of the "*d* bands"

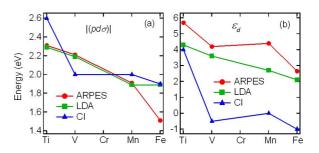


Fig. 1: Transition-metal dependences of the *p*-*d* transfer integral $|(pd\sigma)|$ (a) and the effective *d* level ε_d relative to O 2*p* (b) deduced from ARPES, LDA calculation, and CI theory.

References

- [1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. **70**, 1039 (1998), and references therein.
- [2] K. Horiba et al., Rev. Sci. Instr. 74, 3406 (2003).
- [3] K. Maekawa et al., arXiv:0712.4309v1.
- [4] M. Takizawa et al., unpublished.
- [5] A. Chikamatsu et al., Phys. Rev. B 73, 195105 (2006):
- Phys. Rev. B 76, 201103(R) (2007).
- [6] H. Wadati et al., Phys. Rev. Lett. 100, 026402 (2008).
- [7] H. Wadati et al., Phys. Rev. B 74, 115114 (2006).
- [8] H. Wadati et al., Phase Transitions 79, 617 (2006).

* wadati@phas.ubc.ca