Electronic Structure of Condensed Matter

3C/2005G109

3D spin density and ordered orbital of YTiO₃ observed by X-ray magnetic diffraction

Kosuke SUZUKI¹, Masahisa ITO*¹, Naruki TSUJI¹, Hiromichi ADACHI²⁸, Hironori NAKAO³, Youichi MURAKAMI³, Yasujirou TAGUCHI⁴, Yosinori TOKURA^{5,4,6,7}, Eiji NISHIBORI⁸, Makoto SAKATA⁸,
¹Guraduate School of Engineering, Gunma Univ., Kiryu, Gunma 376-8515, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan
³Guraduate School of Science, Tohoku Univ., Sendai, Miyagi 980-8578, Japan ⁴Advanced Science Institute, Riken, Wako, Saitama 351-0198, Japan ⁵School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ⁶AIST, Tsukuba, Ibaraki 305-8562, Japan ⁷JST, Kawaguchi, Saitama 332-0012, Japan
⁸Guraduate School of Engineering, Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan

Introduction

The X-ray magnetic diffraction (XMD) experiment is an experimental method to measure magnetic form factor of ferromagnetic samples. The magnetic form factor is composed of spin component and orbital component. By this method we can measure both components separately.¹ We have applied the XMD method to ferromagnetic YTiO₃. The crystal structure of YTiO₃ is GdFeO₃-type perovskite structure. This sample is ferromagnetic below 30K. In this compound, the orbitals of 3d electrons of Ti³⁺ ions in t_{2g} state are thought to be ordered. In this study, we measure spin magnetic form factor of this sample. We aim to observe 3D spin density distribution and ordered orbital of this compound in real space by the XMD.

Experiments

The experiment was performed on the beamline 3C. The elliptically polarized white X-ray beam was irradiated on the sample. The magnetic field of 2.15T was applied and the magnetization was aligned along the scattering vector. The scattering angle was fixed to 90 degree. The diffracted X-rays were measured with a pure Ge SSD. The sample temperature was kept at around 15K. The angle between the directions of the incident X-rays and the magnetization of the sample was set at 135° in order to measure spin magnetic form factor only.

Results and Discussion

We measured the spin magnetic form factor for the reciprocal lattice points of 2h h 0 (h=2, 3), 3h 2h 0 (h=1, 2), 4h 3h 0 (h=1, 2), 5h 4h 0 (h=1). We applied the Maximum Entropy Method (MEM) to the combined data of this study and the previous study.² The result is shown in Fig. 1. Fig. 1 shows the obtained 3D spin density distribution of this compound in real space. We display densities that are higher than 60% of maximum density. The R factor was 11%. In Fig. 2, we compare the observed 3D spin density distribution with the calculated $3d-t_{2g}$ electron orbital for a Ti site. Observed spin density distribution represents well the calculated 3d electron orbital. Consequently we succeeded in observing orbital ordering of YTiO₃ in real space by the XMD.

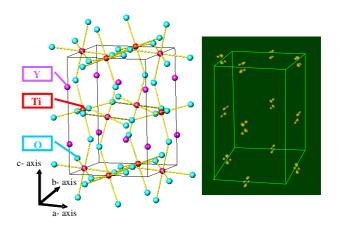


Fig. 1. Observed 3D spin density distribution of YTiO₃ (right). Left figure shows the crystal structure.

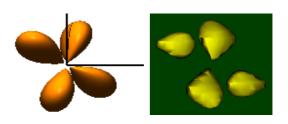


Fig. 2. Comparison of the observed 3D spin density of $YTiO_3$ (right) with the calculated $3d_{-t_{2}}$ orbital (left).

References

[1] M. Blume, J. Appl. Phys. **57** 3615 (1985).

[2] M. Ito et al., Nucl. Instrum. Meth. Phys. Res. B238 237 (2005).

^sPresent address: Center Develop. High. Edu. Prog., Shinshu Univ., Asahi 3-1-1, Matsumoto 390-8621, Japan.

*itom@phys.sci.gunma-u.ac.jp