EXAFS characterization of LaNi₅, LaCo₅ and their hydrides

Kaku ASADA¹, Kazuya KONNO¹, Makoto MATSUURA², Masaki SAKURAI² ¹Miyagi National College of Technology, Natori 981-1239, Japan ²Institute for Materials Research, Tohoku Univ., Sendai 980-8577, Japan

Introduction

LaNi, and LaNi, based alloys are important for hydrogen storage materials, such as an electrode in Nimetal hydride batteries and hydrogen-fuel cells. The crystal structure of LaNi₅ is CaCu₅-type (space group *P6/mmm*). Its hydride, LaNi₅H₇, has hexagonal structure of space group $P6_3mc$. LaCo₅ also has CaCu₅-type structure, while hexagonal structure distorts to orthorhombic structure when LaCo₅ is hydrogenized. Hydride of LaCo₅ is represented as LaCo₅H₃ rather than LaNi_sH₇ for LaNi_s, which leads to smaller hydrogen absorption for LaCo₅ compared with LaNi₅. Their hydrogenation characteristics may correspond to the difference of local structure between LaCo₅ and LaNi₅ [1].

In this paper, the local structures around Ni, Co and La for LaNi₅, LaCo₅ and their hydrides are clarified with EXAFS and the mean-square fluctuation of inter-atomic distance, σ^2 , is given from EXAFS spectrum due to estimate the influence of the structural fluctuation on the hydrogen absorption and the structural transition.

Experiments

Samples of $LaNi_5$ and $LaCo_5$ are prepared by arcmelting the constituent elements under an argon atmosphere and annealed at 1223 K for 5 days. These samples are hydrogenized under 4MPa hydrogen at 353K.

For XAFS measurements, BN pellets are prepared adjusting optimum absorption thickness. XAFS spectra of the Ni (Co) K-edge and La L_{III} -edge were measured by a transmission method from 20 K to 300K using a double Si(111) monochromator. UWXAFS programs are used to analyze the XAFS data and FEFF program is used for multiple scattering calculations.

Fig.1 EXAFS spectra of Ni and Co K-edges represented as $k^{3}\chi(k)$ vs. k at 20K for LaNi₅, LaCo₅ and their hydrides.

Results and discussion

Fig.1 shows Ni K-edge EXAFS spectra at 20K for LaNi₅ and LaNi₅H₇ and Co K-edge for LaCo₅ and LaCo₅H₃. The EXAFS spectrum of LaNi₅ exhibits relatively larger amplitude than LaCo₅, while the phase of spectrum is almost same as that for LaCo₅ because these compounds have same CaCu₅-type crystal structure. Small EXAFS amplitude of LaCo₅ is supposed that the local structure around Co in LaCo₅ has relatively large fluctuation probably due to weak Co-Co bonding compare with Ni-Ni one for LaNi₅, which can be associated with transformation from hexagonal to orthorhombic structure through hydrogenation.

Fig.2 EXAFS spectra of the La L_{III} -edge represented as $k^{3}\chi(k)$ vs. k at 20K for LaNi₅, LaCo₅ and their hydrides.

EXAFS $k_{\mathcal{X}}^{2}(k)$ spectra of the La L_{III} -edge are shown in Fig.2. The amplitude of spectrum for LaNi₅H₇ drastically attenuated from that for LaNi₅. Consequently, σ^{2} (La-Ni) increases from 0.48×10^{-4} [nm²] for LaNi₅ to 1.85×10^{-4} [nm²] for LaNi₅H₇.

Although the XRD patterns of hydrides show longrange structural order, EXAFS spectra indicate that the local structure of hydrides involves large fluctuation of inter-atomic distance. It is interesting that the phase of spectrum for LaNi_5H_7 is almost same as that for LaNi_5 , which disagrees with the calculated spectra for LaNi_5H_7 . It is indicated that the transformation from LaNi_5 to hydride is an isotropic expansion with large structural fluctuation.

Reference

[1] M. Matsuura, et al., J.Alloy Comp. 390, 31 (2005).

* asada@miyagi-ct.ac.jp