1B, 4C/2006G248

Structural properties of the incommensurate organic conductor $(MDT-TS)(I_3)_{0.407}$

Tadashi KAWAMOTO^{*1}, Hisataka Endo¹, Yoshimasa BANDO¹, Takehiko MORI², Toru KAKIUCHI³, Hiroshi SAWA^{3,4}, Kazuo TAKIMIYA⁵ and Tetsuo OTSUBO⁵

¹Department of Organic and Polymeric Materials, Graduate School of Science and Engineering,

Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

²Department of Chemistry and Materials Science, Graduate School of Science and Engineering,

Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

³Department of Materials Structure Science, The Graduate University of Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan

⁴Institute of Materials Structure Science, High Energy of Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

⁵Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Introduction

In organic superconductors, the ratios of the donor molecules to anions are represented by an integer (typically 2:1) [1]. By contrast, the MDT-TSF (methylenedithio-tetraselenafulvalene) series salts are incommensurate ambient pressure organic superconductors and the charge transfer degrees deviate from 0.5 [2]. Moreover, (MDT-TSF)(AuI₂)_{0.436} has shown the characteristic Fermi surface reconstruction by an incommensurate anion potential [3]. $(MDT-TS)(AuI_2)_{0.441}$, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6tetrathiapentalene, shows a metal-insulator (M-I) transition at $T_{\rm MI}$ = 50 K in spite of the basically same crystal structure as those of the MDT-TSF superconductors [4]. The ground state of this salt changes from an "incommensurate antiferromagnetic insulating state" with $T_N = 50$ K to a superconducting phase at 3.2 K under 10.5 kbar [4]. The I₃ salt of MDT-TS also has an incommensurate structure, and the charge transfer degree of the I_3 salt, 0.407, is smaller than that of the AuI₂ salt (0.441). The I_3 salt shows an M-I transition at 75 K. The present paper reports structural properties of (MDT- $TS(I_3)_{0.407}$.

Results and Discussion

Although the synchrotron radiation x-ray oscillation photograph clearly displays incommensurate layer lines, the photograph does not show clear I_3 periodicity. The low-temperature structure is basically the same as that at room temperature. We did not find any extra spot in the donor lattice at 9 K; this means that the space group of the I_3 salt in the insulating phase is the same as that in the metallic phase (*Pnma*). Figure 1 shows the temperature dependence of the lattice parameters. All lattice parameters smoothly increase as the temperature increases.

Figure 1 Temperature dependence of the donor lattice parameters of (MDT-TS) $(I_3)_{0.407}$ normalized at room temperature.

In summary, the low-temperature structure below $T_{\rm MI}$ is basically the same as that in the room temperature. We did not find any structural change.

References

[1] T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2^{nd} Ed. (Springer, Berlin, 1998).

[2] K. Takimiya et al., Angew. Chem. Int. Ed. Engl. 40, 1122 (2001); Chem. Mater. 15, 3250 (2003); *ibid* 15, 1225 (2003); T. Kawamoto et al., Phys. Rev. B 65, 140508(R) (2002); *ibid* 71, 172503 (2005); J. Phys. Soc. Jpn. 74, 1529 (2005).

[3] T. Kawamoto et al., Phys. Rev. B **67**, 020508(R) (2003); Eur. Phys. J. B **36**, 161 (2003).

[4] K. Takimiya et al., Chem. Mater. 16, 5120 (2004); T. Kawamoto et al., Phys. Rev. B 71, 052501 (2005); T. Kawamoto et al., Phys. Rev. B 77 (2008) in press.

* kawamoto@o.cc.titech.ac.jp