Interference fringe in Bragg-(Bragg)^m-Laue case

Kenji HIRANO*1, Tomoe FUKAMACHI1, Masami YOSHIZAWA1, Riichiro NEGISHI1, Keiichi HIRANO² and Takaaki KAWAMURA³

¹Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan

²Institute of Material Structure Science, KEK-PF, High Energy Accelerator Research Organization,

Oho-machi, Tukuba, Ibaraki 305-0801, Japan

³University of Yamanashi, Kofu, Yamanashi 400-8510, Japan

Interference fringes in diffraction beam from side surface of a Ge finite plane-parallel crystal have been observed when the effective linear absorption coefficient μ becomes minimum due to dynamical diffraction effect (Borrmann effect) in Bragg-(Bragg)^m-Laue (BB^mL for short) case (Fig.1) [1,2]. In this paper, we report on the observed results and the origin of interference fringe in BB^mL case.

The experiment was carried out using X-rays from synchrotron radiation at BL-15C KEK-PF. The X-rays were σ polarized and were monochromated using a Si 111 double crystal monochromator and a Ge 220 monochromator. The used X-ray energy was 11100 ± 0.5 eV. The thickness H of a Ge specimen crystal is $45.5 \pm 2.0 \ \mu\text{m}$. The intensities of transmitted (P_t) and diffracted (P_h) beams, diffraction beams from side surface in the transmitted (P_t) and diffracted (P_h) directions were measured. The photograph of P_h for 220 reflection (b) and its intensity distribution (black line in (a)) are shown in Fig. 2.

According to dynamical theory of diffraction, the angle of refraction ε greatly changes when μ becomes minimum. Under the present experimental condition, ε changes from zero to approximately the Bragg angle θ_{B} when the incident angle changes about 0.2. When ε is smaller than $\varepsilon_E = \tan^{-1}(H/L)$, the refracted beam S_1 reaches directly to the surface B as shown in Fig.1 (BL case). When \mathcal{E} is larger than \mathcal{E}_E , the beam of S_2 is reflected to the beam of S_3 at the bottom surface C. The beam of S_3 reaches to the surface B (BBL case). The dispersion angle of incident beam in the present experiment is about 5 arcsec and the incident beam can be regard as a spherical wave. The two beams corresponding S_1 and S_2 are excited simultaneously so that the interference occurs between these two beams at the side surface B. The calculated results (red line) of $P_h^{'}$ using Wagner's approach [3] are also shown in Fig.2 (a). The peaks of the measured interference fringe are well reproduced by the calculated ones except for the peak at x = H. The peak at x = H cannot be explained by the interference effect but can be explained by the confined beam effect [4], because the observed peak width is much narrower than that of interference fringe. The above

results should be useful for designing a new type of X-ray interferometer.

This work was partly supported by the "High-Tech Research Center" Project for Private Universities: 2004-2008 matching fund subsidy from MEXT and Grant-in-Aid for Scientific Research (C) (19540344) from MEXT.

Fig. 1. Schematic diagram of Bragg-(Bragg)^m-Laue case with m=0 and 1. L is the distance from the incident point to the side surface B.

Fig. 2. Interference fringes of P_h . (a) Intensity distributions and (b) Photograph of P_h . L=891 μ m.

References

- [1] T. Fukamachi et al., JJAP 43,L865(2004).
- [2] T. Fukamachi et al., JJAP 44,L787(2005).
- [3] H. Wagner: Z. Phys. 146,127(1956).
- [4] T. Fukamachi et al., JJAP 45,2830(2006).

*q6006qqp@sit.jp