Mechanism of rattling in filled skutterudite compounds RFe$_4$Sb$_{12}$ (R=Pr, Nd) and RRu$_4$Sb$_{12}$ (R=Ce, Pr, Nd) studied by XAFS

Yusuke OMORI1, Kiyofumi NITTA1, Takafumi MIYANAGA*,1, Katsuhiko TAKEGAHARA1, Hitoshi SUGAWARA3, Hideyuki SATO4

1Department of Advanced Physics, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
2KEK-PF, Tsukuba, Ibaraki 305-0801, Japan
3Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima 770-8502, Japan
4Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Introduction
Ternary compounds of filled skutterudite RT$_4$X$_{12}$ (R=rare-earth, T=Fe, Ru, Os, X=P, As, Sb) shows various physical properties by changing the composition of atoms. These compounds have cage structure consisting of 12 X atoms, including an R atom inside. As the size of cage is large, there is space between cage and R atom. In this cage R atom shows anharmonic and individual vibration, which is called “rattling”.

So far, the correlation between rattling motion and size of cage space was shown by XAFS measurement about ROs$_4$Sb$_{12}$ (R=La, Ce, Pr, Nd, Sm) [1]. In this report we have measured XAFS (R L$_{III}$-edge) for RFe$_4$Sb$_{12}$ (R=Pr, Nd) and RRu$_4$Sb$_{12}$ (R=Ce, Pr, Nd) to investigate compounds which have smaller cage space than previous ones.

Experimental and Data analyses
X-ray absorption spectra for R L$_{III}$-edge were collected at BL9C in KEK-PF. The powder samples of RFe$_4$Sb$_{12}$ (R=Pr, Nd) and RRu$_4$Sb$_{12}$ (R=Ce, Pr, Nd) were measured by transmission mode. Measurement temperature range is from 25K to 300K. EXAFS signal were analyzed by XANADU [2] and FEFF 8.01 code [3].

Results and Discussion
Figure 1 shows the Fourier transforms of R L$_{III}$-edge EXAFS measured from 25K to 300K. The FT range is from 2 to 10.5 Å$^{-1}$ about CeRu$_4$Sb$_{12}$, and from 2 to 11 Å$^{-1}$ about other four compounds.

The size of cage space for RRu$_4$Sb$_{12}$ compounds is larger than that for RFe$_4$Sb$_{12}$ because of larger lattice constant. On the other hand, if rare-earth ion is replaced within the same T$_4$Sb$_{12}$ cage, the contribution of lanthanide contraction is dominant, so the size of cage space becomes larger as atomic number increases.

Here we discuss only peak intensity of FT spectrum. The first peak corresponds to the first nearest Sb atom and the second peak corresponds to the second nearest Fe or Ru atom for RFe$_4$Sb$_{12}$ (R=Pr, Nd) and CeRu$_4$Sb$_{12}$. The first peak contains the first and second nearest Sb and Ru atom for PrRu$_4$Sb$_{12}$ and NdRu$_4$Sb$_{12}$. As a whole the first peak for RRu$_4$Sb$_{12}$ is larger than that for RFe$_4$Sb$_{12}$. However, there is a difference in the appearance of peaks, so one cannot compare directly these five compounds about the peak intensity any more.

Next we see the temperature dependence of the peak intensities. The decreases of the peak intensity are shown in all compounds with increase of temperature. This means that the Debye-Waller factor increases due to thermal atomic vibration by increasing temperature. The decrease in the peak intensity is prominent in RRu$_4$Sb$_{12}$. This remarkable decrease of peak intensity is expected to be attributed by the rattling motion in RRu$_4$Sb$_{12}$ compounds with larger cage space.

References