X-ray magnetic circular dichroism of $La_{1-x}Ca_xCoO_3$ (x ≤ 0.35)

Hiroyuki KATSURAGAWA¹, Maki OKUBE¹, Takayasu HANASHIMA², Satoshi SASAKI*¹ ¹Materials and Structures Lab., Tokyo Inst. Tech., Nagatsuta, Yokohama 226-0803, Japan ²COE SLLSP, Ritsumeikan Univ., Kusatsu 525-8577, Japan

Introduction

The compound LaCoO₃ is of particular interest because it has a spin-state transition where a nonmagnetic insulator broadly transforms into a paramagnetic phase around 50 K and a metallic phase around 500 K. Magnetic susceptibility has a maximum broad peak around 100 K and is much smaller than calculated one on the assumption of low-spin ground and high-spin excited states [1]. With the occupied O 2p and the unoccupied $3d(e_g)$ states, the spin-state transition has highly mixed characteristics between Mott-Hubbard and charge transfer types. The paramagnetic behavior above 100 K is attributed to the intermediate-spin state $(t_{2g}{}^5e_g{}^1; S = 1)$ [2,3].

The influence of charge carrier doping to LaCoO₃ can be observed when trivalent La^{3+} ($r_{IR} = 1.36$ Å) coordinated by twelve oxygen ions is partially substituted by divalent alkali-earth metals of remarkably different ionic radii r_{IR} such as Ca²⁺ ($r_{IR} = 1.34$ Å), Sr²⁺ ($r_{IR} = 1.44$ Å) or Ba^{2+} ($r_{IR} = 1.61$ Å). In $La_{1-x}M_xCoO_3$ doping with larger Sr^{2+} and Ba^{2+} yields spin glass behavior (x ≤ 0.18 ; $x \le 0.20$) and ferromagnetic order (0.18 < $x \le 0.30$; 0.20 $< x \le 0.30$) at low temperature, respectively, while doping with Ca²⁺ shows only ferromagnetic order for $x \le 0.30$ [4]. It is found that for Sr doping the ferromagnetic-order temperature is the highest and the resistivity is the lowest [4]. Non-dependence on the ionic radii between Sr and Ca remains to be clarified. Therefore, in this report we present a site- and valence-selective study of X-ray magnetic circular dichroism (XMCD) at the Co K absorption edge to elucidate the relationship between magnetic property and crystal structure.

Experimental

XANES and XMCD experiments were carried out on the BL-6C. The intensity after transmitting through the sample was measured with ionization chambers, where front chamber was 50 mm in length and filled with pure N_2 , while rear chamber was 300 mm and filled with 75% $N_2 + 25\%$ Ar gas. In XMCD measurements, the absorption difference between right-circularly and leftcircularly polarized X-rays was measured in connection with spin parallel and antiparallel in the direction of Xray travel. A standard transmission setup was used with the Faraday arrangement, where X-rays irradiates the sample through a pair of pinholes in rare-earth magnets in a magnetic field of 0.4 T. The circularly-polarized beam was produced by a phase retarder, where a synthetic single crystal of diamond (001) was set to have the scattering plane inclined by 45° from the vertical plane and to be close to the 111 Bragg condition in the asymmetric Laue case.

Results and discussion

Figure 1 shows XMCD spectra of $La_{1,x}Ca_xCoO_3$ (x ≤ 0.35) measured at the Co *K* absorption edge, which is compared with those of $La_{1,x}Sr_xCoO_3$. A negative XMCD peak was clearly observed at E = 7.719 keV within the threshold region of the main edge for $La_{1,x}Ca_xCoO_3$, suggesting the existence of the intermediate-spin state of Co³⁺. A positive XMCD peak appeared at E = 7.723 keV by Ca substitution of La in LaCoO₃. The dispersion-type XMCD signals at the main edge may be rationalized with the double-exchange interaction between Co³⁺ and Co⁴⁺, where a hybridization of Co 3*d* and O 2*p* can stabilize a magnetic state of La_{1-x}Ca_xCoO₃.

Fig. 1: XMCD spectra of $La_{1-x}Ca_xCoO_3$ (left) and $La_{1-x}Sr_xCoO_3$ (right) at the Co *K* edge.

References

R. R. Heikes et al., Physica (Amst.) 30, 1600 (1964).
L. Sudheendra et al., Chem. Phys. Lett. 340, 275 (2001).

[3] T. Hanashima et al., Jpn. J. Appl. Phys. 43, 4147 (2004).

[4] M. Kriener et al., Phys. Rev. B 69094417 (2004).

* sasaki@n.cc.titech.ac.jp