In-phase Interference Fringe in Laue case and its Dispersion Surface

Riichirou NEGISHI*1, Tomoe FUKAMACHI1, Masami YOSHIZAWA1, Kenji HIRANO1, Keiichi HIRANO2 and Takaaki KAWAMURA3

1 Saitama Institute of Technology, 1690 Pusaiji, Fukaya, Saitama 369-0293, Japan
2 Institute of Material Structure Science, KEK-PF, Oho, Tsukuba, Ibaraki 305-0801, Japan
3 University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan

We have found interference fringes in the transmitted (I_t) and diffracted (I_h) rocking curves which are in-phase with each other [1]. We measured GaAs 200 rocking curves in Laue case for X-ray energies at which either the real (\(\chi_{hr}\)) or the imaginary (\(\chi_{hi}\)) part of Fourier transform of X-ray polarizability is zero. The results are shown in Fig. 1. For \(\chi_{hr}=0\) (a), the two rocking curves show in-phase interference fringes with the intensity maxima and minima at the same angle. The intensity of \(I_t\) is always higher than the background (dotted line). For \(\chi_{hi}=0\) (b), \(I_t\) shows maxima at the angle where \(I_h\) shows minima and vice versa, i.e., the two curves are anti-phase which is well known as a Pendellösumg fringe. The intensity of \(I_t\) is always lower than the background.

The corresponding complex dispersion surfaces are shown in Fig.2 when \(\chi_{hr}=0\) (a) and \(\chi_{hi}=0\) (b). When \(\chi_{hi}=0\) (b), the imaginary parts of the two branches (dashed line) become a single line and the anomalous absorption (Borrmann effect) does not occur even when the crystal is absorbing. When \(\chi_{hr}=0\) (a), the real part of the dispersion surface looks like that in Bragg case without absorption. The real parts of the two branches are degenerate in the center. As a result, the central peaks of \(I_h\) and \(I_t\) are not interference fringes but are produced by anomalous transmission, because the imaginary part of one of the branches becomes zero in the center. The small ripples in \(I_h\) and \(I_t\) beside the peaks are the interference fringes, because there are two branches in the real part.

By computing the electric fields in the crystal, we are able to analyze why the interference fringe becomes in-phase when \(\chi_{hr}=0\).

Reference

*negishi@sit.ac.jp