Crystal Structure of High Pressure phase of MgAl₂O₄ synthesized at conditions of 2200 K and 41.8 GPa

Yasuhiro KUDOH^{*1}, Takahiro KURIBAYASHI¹, Yuichiro SUEDA²,

Tesuo IRIFUNE² and Satoshi SASAKI⁵

¹Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science, Tohoku University,

Sendai 980-8578, Japan

²Geodynamics Research Center, Ehime university, Matsuyama 790-8577, Japan

³Materials and Structures Laboratory, Tokyo Institute of Technology

Nagatuda Yokohama 226-8503, Japan

The specimen used in this study was a single crystal of high pressure phase of MgAl₂O₄ synthesized using a multi-anvil apparatus at conditions of 2200 K and 41.8 GPa [1] and quenched to ambient condition by Sueda et al. (2004). EDS analysis showed that the specimen has a chemical composition of ideal formula MgAl₂O₄ within the limit of erperimental error. Sets of X-ray diffraction intensities were measured with a single crystal of 47x47x24 µm using synchrotron radiation at the beam line BL-10A, Photon Factory, High Energy Accelerator Reasearch Organization, Tukuba, Japan. The wave length, λ =0.7009 Å was calibrated by the unit cell constants of a ruby standard crystal (a=4.76099(6)) Å, c=12.99625(35) Å). The crystallographic data obtained are: orthorhombic, a=2.781(3) Å, b=9.183(3)Å, c=9.383(3) Å, V=239.6(3) Å³. The systematic abscences and N(Z) test for a center of symmetry indicated the centrosymmetric space group Cmcm (No.63). From the total of 2043 reflections measured in the sphere of $\sin\theta/\lambda = 1.00 \text{ Å}^{-1}$, 1264 symmetryindependent reflections were obtained by averaging the symmetry equivalent intensities in Laue group mmm $(R_{int} = 11\%).$

The crystal structure is isostructural with CaTi₂O₄ (CTtype) and refined to an R=8.7 % (Rw=8.3%) with anisotropic temperature factors. The calculated density value 3.94 g/cm³ is 10% larger than 3.578 g/cm³ value of spinel (SP-type), MgAl₂O₄ [2] which is the stable phase at ambient condition. The Mg atom is surrouded by 6 oxygen atoms with the average Mg-O distance being 2.142(4) Å and another 2 oxygen atoms at 2.558(1) Å with the average Mg-O distance being 2.246(4) Å for 8 fold coordination. The Al atom is surrouded by 6 oxygen atoms with the average Al-O distance being 1.921(3) Å which is comparable to the 1.926 Å value of spinel [2]. Fig. 1 is the comparison of MgO₄ group in SP-type and MgO₆ group in CT-type viewed along the direction perpendicular to the basal trangles of MgO₄ tetrahedra and MgO₆ octahedra, showing a syntaxial relation between two structures.

Fig. 1. Comparison of **a** MgO₄ group in SP-type MgAl₂O₄ and **b** MgO₆ group in CT-type MgAl₂O₄.

References

[1] Y. Sueda, T. Irifune, T. Inoue, Y. Higo, T. Kunimoto,
H. Namura and K. Funakoshi: Mineralogical Society of Japan 2004 Annual Meeting, Abstr., p.25 (2004)
[2] P. Fischer: Z. Kristallogr., 124, 275-302 (1967)

*ykudoh@m.tains.tohoku.ac.j