Crystal Structure of Ba-Doped α-Tricalcium Phosphate
(Ca₁₋ₓBaₓ)₃(PO₄)₂

Masatomo YASHIMA* and Yoichi KAWAIKE
Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan

Introduction
Tricalcium phosphate [TCP: Ca₃(PO₄)₂] is one of the most important biomaterials for bone substitute applications as well as apatites. Far less attention has been devoted to the crystal structure of non-doped and doped α-TCP, probably due to its complicated structure. The purpose of the present study is to investigate the unit cell parameters and site occupancy of Ba-substituted α-TCP, (Ca₁₋ₓBaₓ)₃(PO₄)₂ (x = 0.05, 0.10 and 0.15), through a high-angular-resolution synchrotron powder diffractometer. This work was published in M. Yashima and Y. Kawaike, Chem. Mater. 19, [17] 3973-3979 (2007).

Experiments
Single phase of alpha barium-substituted tricalcium phosphate (Ba-α-TCP) (Ca₁₋ₓBaₓ)₃(PO₄)₂ (x=0.05, 0.10 and 0.15) has been prepared by solid-state reactions. Synchrotron x-ray powder diffraction experiments of α-TCP, (Ca₁₋ₓBaₓ)₃(PO₄)₂ (x = 0.05, 0.10 and 0.15) were performed at 298 K using the multiple-detector system installed at the BL-4B2 beam line of the Photon Factory, KEK, Japan. A monochromatized 1.20628(4) Å x-ray beam was utilized. The crystal structure of the (Ca₁₋ₓBaₓ)₃(PO₄)₂ was refined by the Rietveld method with a computer program RIETAN-2000 (Izumi & Ikeda, 2000).

Results and discussion
Diffraction data were successfully analyzed by the single phase Ba-α-TCP (space group P2₁/a). The calculated intensity agreed well with the observed data. For example, for the (Ca₀.₈₅Ba₀.₁₅)₃(PO₄)₂ composition, the reliability factors were Rwp = 5.42%, Rp = 4.13%, S = 1.94, R₁ = 2.73% and Rf = 1.92%. Unit-cell parameters a, b, c and β increase with increasing Ba content. The unit cell volume also increases with Ba content (Fig. 1), which is ascribed to the substitution of Ca atoms by the larger-sized Ba atoms. Figure 2 shows the crystal structure of Ba-substituted α-TCP, depicted with the refined crystallographic parameters. The Ba atoms are substituted for the Ca sites. Most of the Ba atoms are located at three crystallographic sites, namely, Ca7: (0.0909(6), 0.4167(2), 0.7823(5)) g(Ba)=0.65(1); Ca11: (0.4068(6), 0.2506(2), 0.2199(5)) g(Ba)=0.67(1); Ca5: (0.0983(6), 0.0837(2), 0.7857(5))

* yashima+@+materia.titech.ac.jp