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Spin-Crossover Dynamics in Solution Studied with 
a  Newly-Developed P icosecond T ime-Resolved 
Fluorescence XAFS Technique

The experimental strategy and setup for a new picosecond time-resolved fluorescence X-ray absorption fine 
structure technique (TR-XAFS) is presented. X-ray positional active feedback combined with a fi gure-of-merit 
(FOM) scan of the laser beam position is employed as a key technique. It is shown that pump-probe TR-XAFS 

using the pulsed X-ray structure of synchrotron radiation sources is a powerful tool for investigating the dynamics of the 
electronic state and molecular structure of non-crystalline samples. A TR-XAFS study of a photo-induced spin-cross-
over reaction of the tris(1,10-phenanthrorine)iron(II) complex in water is presented.

Recently, time-resolved X-ray measurements are 
becoming powerful tools for exploring structural dynam-
ics in the fields of materials and biological sciences 
[1-7]. Time-resolved X-ray absorption fi ne structure (TR-
XAFS) can be used to provide information on the elec-
tronic state and molecular structure of non-crystalline 
samples with a temporal resolution equal to the pulse-
width of the X-rays.

In order to conduct successful TR-XAFS measure-
ments in the pump-probe mode, a precise spatial and 
temporal overlap of the X-ray and laser pulses is es-
sential. However, maximizing the incident X-ray beam 
intensity makes it difficult to maintain spatial overlap 
during the experiment, since a high intensity X-ray 
beam leads to a large heat load, mainly on the mono-
chromator and mirror. This then destabilizes the X-ray 
beam position. In order to maintain the spatial overlap 
during data collection, the X-ray beam position must be 
stabilized using active positional feedback. At the same 
time, the spatial overlap must be reproducibly tuned dur-

ing the data collection period to avoid mismatch of the 
X-ray and laser beam positions due to positional drift of 
the two beams. The most effective check is a laser posi-
tional scan using the photo-induced X-ray signal itself as 
a fi gure of merit (FOM) of the spatial overlap. We have 
newly developed an effective TR-XAFS measurement 
system equipped with stable alignment of the X-ray and 
laser beam positions at AR-NW14A [8]. Figure 1 shows 
the experimental layout for liquid TR-XAFS [9]. The 794 
kHz X-ray pulses from the undulator are delivered to 
a Si(111) double crystal monochromator (DCM) with 
a pulse duration of 60 ps (rms). The X-ray position is 
monitored with a position-sensitive ion chamber (PSIC) 
downstream of the DCM, and its output is converted to 
a positional signal. The beam position is stabilized by a 
feedback system which monitors the difference between 
the positional signal and the standard beam position. 
The feedback system stabilizes the X-ray beam position 
and intensity to within 1 μm and 1% respectively. 

Figure 1
The experimental setup for liquid TR-XAFS at AR-NW14A. The 945 Hz frequency and the delay time between the laser and X-ray pulses was 
generated by CANDOX systems which consist of frequency dividers, IQ modulator phase shifters, and digital counters with less than 3 ps jit-
ter.
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The position of the laser beam is controlled by a mir-
ror on a motorized stage near the sample. The two mo-
torized stages enable spatial overlap of the X-ray and 
laser beams to be achieved by FOM scanning using the 
X-ray signal itself. The spatial overlap is optimized in 
this manner to within 0.1 mm. The details of the setup 
and the sample environment are described in Ref. [9].

This novel TR-XAFS system was readily applied 
to study the photo-induced spin-crossover reaction of 
the tris(1,10-phenanthrorine)iron(II) complex in water. 
Photo-excitation of the Metal to Ligand Charge Transfer 
(MLCT) band at 400nm induces a high spin state 5T2.
Before photo-irradiation, the spin state of this compound 
is the low spin state 1A1. The decay time of the relax-
ation from the high spin state to the low spin state has 
been estimated to be ~680 ps based on a spectroscopic 
measurement [10]. Figure 2 (a) shows the steady-state 
XAFS spectra of [FeII(phen)3]

2+ in the low-spin state, 
and also of [FeII(2-CH3-phen)3]

2+ which is used as a 
high-spin reference sample. The difference spectrum of 
these states is shown in Fig. 2 (b) (solid line). The open 
circles, which show the transient difference spectrum 
between the low-spin [FeII(phen)3]

2+ and photo-excited 
intermediate species observed at 50 ps after laser 
excitation, perfectly coinside with the reference low-
spin/high-spin difference spectrum. This result clearly 
shows that the photo-excited intermediate species at 50 
ps after laser excitation is very similar to the high-spin 

reference sample. The steady-state difference spectrum 
is scaled by 0.06, which accounts for the 6% photo-
excitation yield of the ground-state species in solution 
by laser irradiation. 

Features A and B arise from the 1s to 4p transition. 
Features C and D are attributed to multiple scattering 
processes of the photo-electron. Spectral feature B 
directly refl ects the change in distance between the Fe 
and N atoms, since the Fe 4p orbital is hybridized with 
the N 2p orbital [4, 6]. Therefore, the intensity enhance-
ment of the differential spectrum at this feature sug-
gests that photo-induced elongation of the Fe-N bond 
distance accompanies the spin transition.

We have demonstrated that X-ray positional feed-
back of the monochromator and FOM scanning of the 
laser beam position are powerful tools for successful 
TR-XAFS measurements. We are now applying this 
powerful technique to other photo-reactions of metal 
complexes which are related to photo-catalysis and 
solar-energy conversion.
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Figure 2 
(a) Fe K-edge XANES spectra of a 50mM aqueous solution of 
[FeII(phen)3]

2+ (solid line) and [FeII(2-CH3-phen)3]
2+ (dashed line). 

(b) The static difference spectrum between [FeII(phen)3]
2+ and 

[FeII(2-CH3-phen)3]
2+ (solid line). The transient difference spectrum 

between before excitation (-1.3 μs) and after excitation (+50 ps) of 
[FeII(phen)3]

2+ (circle).
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