Summary of Experimental Stations

About 70 experimental stations are operated at the PF Storage Ring and the PF-AR, as shown in Figs. 1 and 2. Two thirds of the stations are dedicated to research using hard X-rays, with the remaining one third used for studies in the VUV and soft X-ray energy regions. Tables 1 and 2 summarize the areas of the research carried out at experimental stations at the PF storage ring and PF-AR.

The specifications in terms of optics and performance of each experimental station differ according to experimental requirements and methodology. Tables 3 and 4 list the details of the optics of the hard X-ray stations and the soft X-ray / VUV stations. The principal performance parameters, including energy range, energy resolution, beam-spot size, and photon flux at the sample position are shown.

Table 1 Complete list of experimental stations at the PF Storage Ring.

Experimental Station	Person in Charge
BL-1 A** Crystal structure analysis beamline B* X-ray powder diffraction under extreme condition C*** VUV and soft X-ray photoelectron spectroscopy	A. Nakao A. Nakao K. Ono
BL-2 (Undulator) A Soft X-ray spectroscopy C Soft X-ray spectroscopy	Y. Kitajima J. Adachi
 BL-3 (A: Short Gap Undulator) A X-ray diffraction and scattering station for materials science B VUV and soft X-ray spectroscopy C Characterization of X-ray optical elements/White X-ray maganetic diffraction 	H. Nakao (Feb. 2009 ~) A. Yagishita K. Hirano
BL-4 A Trace element analysis, X-ray microprobe B1 Micro-crystal and Micro-area structure analysis B2 Powder diffraction C X-ray diffraction and scattering	A. Iida A. Nakao A. Nakao H. Nakao (Feb. 2009 ~)
BL-5 (Multipole Wiggler) A Macromolecular crystallography	Y. Yamada
BL-6 A Macromolecular crystallography C X-ray diffraction and scattering	N. Igarashi H. Kawata
BL-7 A [RCS] Soft X-ray spectroscopy B [RCS] Surface photochemical reaction and angle-resolved photoelectron spectroscopy C X-ray spectroscopy and diffraction	K. Iwata [RCS], K. Amemiya K. Iwata [RCS], K. Amemiya H. Sugiyama
BL-8 B****X-ray powder diffraction under extreme conditon	A. Nakao
BL-9 A XAFS C X-ray versatile station	Y. Inada M. Nomura
BL-10 A X-ray diffraction/scattering C Small-angle X-ray scattering of solution sample	A. Nakao T. Mori
BL-11 A Soft X-ray spectroscopy B Surface EXAFS, soft X-ray spectroscopy C VUV spectroscopy (solid state) D VUV and soft X-ray photoelectron spectroscopy for solid	Y. Kitajima Y. Kitajima K. Ono K. Ito
BL-12 A Characterization of VUV-SX optical elements, soft X-ray spectroscopy C XAFS	A. Yagishita M. Nomura

Experimental Station	Person in Charge
 BL-13 (Multipole Wiggler/Undulator) A*** Laser-heating high-pressure and high-temperature X-ray diffraction (DAC) B1*** Surface-sensitive XAFS, X-ray diffraction B2*** High-pressure and high-temperature X-ray diffraction C*** Soft X-ray photoemission spectroscopy and XAFS 	T. Kikegawa T. Kikegawa T. Kikegawa K. Mase
BL-14(Vertical Wiggler)ACrystal structure analysis and detector developmentBHigh-precision X-ray opticsC1Medical applications and X-ray experimens for general purposeC2High-pressure and high-temperature X-ray diffraction (MAX-III)	S. Kishimoto K. Hirano K. Hyodo T. Kikegawa
BL-15ASmall-angle X-ray scattering of muscle and alloysB1White X-ray topography and X-ray experiments for general purposeB2Surface and interface X-ray diffractionCHigh-resolution X-ray diffraction	T. Mori H. Sugiyama H. Sugiyama K. Hirano
BL-16 (Variable Polarization Undulator)A Soft X-ray spectroscopies with circular and linear polarization	K. Amemiya
BL-17 (Short Gap Undulator) A Macromolecular crystallogarphy	N. Igarashi
BL-18 A [ISSP] Angle-resolved photoelectron spectroscopy of surfaces and interfaces B General purpose (X-ray) C High pressure X-ray powder diffraction (DAC)	I. Matsuda [ISSP], A. Yagishita A. Iida T. Kikegawa
BL-19 (Revolver Undulator) A [ISSP] Spin-resolved photoelectron spectroscopy (Mott detector) B [ISSP] Soft X-ray emission spectroscopy	I. Matsuda [ISSP], A. Yagishita I. Matsuda [ISSP], A. Yagishita
BL-20 A VUV spectroscopy B [ANBF] White and monochromatic beam general-purpose X-ray station	K. Ito G. Foran [ANBF], H. Kawata
BL-21 [Light Source Division]Beam position monitoring	K. Haga [Light Source]
 BL-27 (Beamline for experiments using radioisotopes) A Radiation biology, soft X-ray photoelectron spectroscopy B Radiation biology, XAFS, X-ray diffuse scattering 	K. Kobayashi N. Usami
 BL-28 (Elliptical / Helical Undulator) A High-resolution VUV-SX beamline for angle-resolved photoemission B High-resolution VUV-SX spectroscopy 	K. Ono K. Ono

RCS Research Center for Spectrochemistry, the University of Tokyo ISSP Institute for Solid State Physics, the University of Tokyo ANBF Australian National Beamline Facility

* shutdown at the summer of 2008.

** shutdown at the end of 2008. shutdown at the end of FY2008. set up at the FY2008..

Table 2 List of experimental stations at the PF-AR.

Experimental Station	Person in Charge
AR-NE1 (Multipole Wiggler) A*** Laser-heating high pressure X-ray diffraction and nuclear resonant scattering (DAC)	T. Kikegawa
AR-NE3 (Undulator) A*** Macromolecular crystallography	Y. Yamada
AR-NE5 C High pressure and high temperature X-ray diffraction (MAX-80)	T. Kikegawa
AR-NW2 (Undulator) A XAFS/Dispersive XAFS /Time-resolved-X-ray diffraction	Y. Inada
AR-NW10 A XAFS	M. Nomura
AR-NW12 (Undulator) A Macromolecular crystallography	N. Matsugaki
AR-NW14 (Undulator) A Time-resolved X-ray diffraction, scattering and absorption	S. Koshihara [ERATO], S. Adachi

ERATO Exploratory Research for Advanced Technology, Japan Science and Technology Agency

*** set up at the FY2008.

Figure 2 Plan view of beamlines in the PF-AR north-east, north, and north-west experimental halls.

Table 3 Specifications of X-ray beamline optics.

Branch Beamline	Horizontal Acceptance (mrad)	Type of Monochromator	Mirror	Photon Energy (keV)	Beam Size (H×V) (mm)	Photon Flux at Sample Position (/s)	Energy Resolution (∆E/E)×10 ⁻⁴	Reference
BL-1A*		Flat Double Crystal Si(111)	Bent Cylinder	5 ~ 20	0.7×0.3	4×10 ¹¹ (8.3 keV, 400 mA)	~ 5	
BL-1B*	2	Flat Double Crystal Si(111)	Bent Cylinder	6 ~ 21	0.7×0.5	8×10 ¹⁰ /4mm² (8.3 keV, 300 mA)	~ 5	1
BL-3A	1	Flat Double Crystal Si(111)	le Bent Cylinder 4 ~ 14 0.7×0.2 6×10 ¹² i(111)		~ 5			
BL-3C	1.75	Double Crystal None 4 ~ 20 Si(111) or whitle		4 ~ 20 or whitle	20×6(mono) 0.1×0.1(white			
BL-4A	6	Double Crystal Sagittal Focusing	Double CrystalVertical Focusing4 ~ 2050×4Sagittal FocusingMirror4×1			~ 2	5	
BL-4B1	4.5	Double Crystal Si(111)	ble Crystal 4 ~ 35 50×5 11) None			~ 2	6	
BL-4B2	4.5	Double Crystal Si(111)	Bent Cylinder	6 ~ 20	13×2		~2	7, 8
BL-4C	2	Flat Double Crystal Si(111)	Bent Cylinder	5 ~ 19	0.7×0.5		~5	9, 10
BL-5A	0.5	Micro-Channel Double Crystal Si(111)	Bent Plane Si Rh-Coated Bent Cylinder Si Rh-Coated	6.5 ~ 17	1.2×0.4	3×10 ¹¹ (0.2×0.2 mm²)	~2	
BL-6A	1.2	Bent Si(111) (α = 7.5°)	Bent Plane ULE	9.5 ~ 13.5 0.5×0.25 1×10 ¹⁰ (12.7keV) (12.7keV, 450mA, 0.2×0.2 mm ²)		~10	11	
BL-6C	2	Flat Double Crystal Si(111)	Bent Cylinder	5 ~ 12 (~25 non- Focus)	1.2×1.2			
BL-7C	4	Double Crystal Si(111) Sagittal Focusing	Double Mirror Fused Quartz Focusing	4 ~ 20 (4 ~ 13)	5×1	1×10 ¹⁰ /6mm ² (8 keV, 300 mA) (1×10 ¹¹ when focused)	~ 2	12 - 14
BL-8B**	1.80	Flat Double Crystal Si(111)	Bent Cylinder	5 ~ 19	0.75×0.45	2.2×10 ¹¹ (12.4keV, 400mA)	~ 5	

Branch Beamline	Horizontal Acceptance (mrad)	Type of Monochromator	Mirror	Photon Energy (keV)	Beam Size (H×V) (mm)	Photon Flux at Sample Position (/s)	Energy Resolution (∆E/E)×10 ⁻⁴	Reference
BL-9A	3	Double Crystal Si (111)	Collimating and Focusing Bent Conical Mirrors (Rh-Coated) Double Flat Mirror (Rh/Ni-Coated)	2.2 ~ 15	1×0.3	4×10 ¹¹ (9 keV, 300 mA)	2	15, 16
BL-9C	3.5	Double Crystal Si(111)	Bent Cylinder Rh-Coated Si	4 ~ 23 or white	1×1	5×10¹º(9 keV, 300 mA)	~ 2	
BL-10A	1	Si(111), Si(311) Quartz(100), PG(002) Curved Si(111) (α~ 4°, 8°)	Plane Pt coated Fuzed Quartz	5 ~ 25	10×3		10 ~ 5	17
BL-10C	4	Double Crystal Si(111)	Bent Cylinder	4 ~ 10	1.2×0.2	~10 ^{11/} 1.5mm² (8 keV, 400 mA)	2	
BL-12C	2	Double Crystal Si(111) Si(311)	Bent Cylinder	6 ~ 23	0.65×0.4	5×10 ¹⁰ /1mm ² (8 keV, 300mA) w.Si(111)	~ 2	18
BL-13A*	1	Double Crystal Si(111), Ge(111)	Cylinder Pt-coat Fused Quartz	30	0.045×0.032	5×10 ¹⁰ /1mm ²	~ 2	19
BL-13B1* B2*	4	Double Crystal Si(111), Si(220) Sagittal Focusing	Bent Plane Fused Quartz	4 ~ 30	4×1		~ 2	20
BL-14A	1.28 (Vertical)	Double Crystal Si (111) Si (311) Si (553)	Bent Cylinder Rh-coated Fused Quartz	5.1 ~ 19.1 9.9 ~ 35.6 22.7 ~ 84.5	2×1 at focus 5×38		2	21
BL-14B	2.2 (Vertical)	Double Crystal Si(111),	None	10 ~ 57	5×14		2	
BL-14C1 C2	1.96 (Vertical)	Double Crystal Si(111), Si(220)	None	5 ~ 100 or white	6×70		2	22, 23
BL-15A	2	Bent Crystal Ge(111) $(\alpha = 8.0^{\circ})$	Bent Plane, Fused Quartz Pt-coated	8.0 (fixed)	0.5×0.25	9×10 ¹⁰ /mm² (8.0 keV, 350 mA)	~ 10	24
BL-15B1 B2	2	Double Crystal Si (111)	Bent Cylinder	5 ~ 20 or white	0.6×0.4	10 ¹¹ /1mm² (8.0keV, 350mA)	~ 2	
BL-15C	2	Double Crystal Si (111)	None	4 ~ 30	60×6			

Branch Beamline	Horizontal Acceptance (mrad)	Type of Monochromator	Mirror	Photon Energy (keV)	Beam Size (H×V) (mm)	Photon Flux at Sample Position (/s)	Energy Resolution (∆E/E)×10 ⁻⁴	Reference
BL-17A	0.1 ~ 0.2	Double Crystal Si(111) Liquid N ₂ cooling	Bent Plane Si Rh-Coated Bent Plane Si Rh-Coated	6 ~ 9 11 ~ 13	0.25×0.04	10 ¹⁰ (12.4 keV, 450mA, 0.02×0.02mm ²)	~2	26, 27
BL-18B	2	Double Crystal Si(111)	Plane and Bent Cylinder	6 ~ 30			~2	
BL-18C	1	Double Crystal Si(111)	Cylinder Fused Quartz, Pt-coated	6 ~ 25	0.07×0.04		~2	
BL-20B [ANBF]	2	Channel Cut Si(111) Channel Cut Si(311) Sagittal Focusing Si(111) Double Crystal	None	4.5 ~ 21 10 ~ 36 4.5 ~ 25	25×2 25×1.5 0.6×1		~ 2 ~ 1 ~ 2	28
BL-27B	4	Double Crystal Si(111)	None	4 ~ 20	100×6		~ 2	29
AR-NE1A**	0.28	Micro-Channel Double Crystal Si(111), High- resolution Channel Cut Si(4,2,2,)&(12,2,2)	Bent Plane W/C Mutilayer Coated Si	6 ~ 50	0.1×0.1	6x10 ¹¹ (14.4keV)	~ 2	
AR-NE3A**	H:0.2 V:0.1	Double Crystal Si(111) Liquid N ₂ Cooling	Pre-Mirror Bent Flat Si Rh-Coated Post-Mirror Bent Cylinder Fused Quartz Rh-Coated	6.5 ~ 17	0.8×0.2	8×10 ¹¹ (0.2×0.2mm²)	~ 2	
AR-NE5C	3	Double Crystal Si(111)	None	30 ~ 100 or white	60×5		5	30
AR-NW2A	H:1.0 V:0.2	Double Crystal Si(111) Liquid N ₂ Cooling	Bent Cylinder Si Rh-Coated Bent Flat Si Rh-Coated	5 ~ 25	0.6×0.2 ~10×0.06	6×10 ¹²	~2	31-33
AR-NW10A	1.2	Si(311)	Pt-Coated Bent Cylinder	8 ~ 42	2.2×0.5	1×10 ¹⁰	~1	34

Branch Beamline	Horizontal Acceptance (mrad)	Type of Monochromator	Mirror	Photon Energy (keV)	Beam Size (H×V) (mm)	Photon Flux at Sample Position (/s)	Energy Resolution (∆E/E)×10 ⁻⁴	Reference
AR-NW12A	H:0.3 V:0.1	Double Crystal Si(111) Liquid N ₂ cooling	Pre-Mirror Bent Flat Si Rh-Coated Post-Mirror Bent Cylinder Si Rh-Coated	6.5-17	1.3×0.3	2×10 ¹¹ (0.2×0.2 mm ²)	~2	
AR-NW14A [ERATO]	H:0.3 V:0.1	Double Crystal Si(111) Liquid N ₂ Cooling	Bent Cylinder Rh-Coated Bent Flat Rh-Coated	4.9 ~ 25	0.45×0.25	5×10 ¹²	~2	35

FRATO Exploratory Research for Advanced Technology, Japan Science and Technology Agency ANRF Australian National Beamline Facility

shutdown during FY2008.

set up at the FY2008.

REFERENCES

- [1] A. Fujiwara et al., J. Appl. Cryst., 33 (2000) 1241.
- [2] S. Sasaki et al., Rev. Sci. Instrum., 63 (1992) 1047.
- [3] K. Kawasaki et al., Rev. Sci. Instrum., 63 (1992) 1023.
- [4] T. Mori and S. Sasaki, Rev. Sci. Instrum., 66 (1995) 2171.
- [5] A. lida et al., Rev. Sci. Instrum., 66 (1995) 1373.
- [6] K. Ohsumi et al., Rev. Sci. Instrum., 66 (1995) 1448.
- [7] Powder Diffraction User Group, KEK Report, 94-11 (1995).
- [8] H. Toraya, H. Hibino and K. Ohsumi, J. Synchrotron Rad., 3 (1996) 75.
- [9] H. Iwasaki et al., Rev. Sci. Instum., 60 (1989) 2406.
- [10] Photon Factory Activity Report 1995, #13 (1996) E-1.
- [11] N. Sakabe et al., Rev. Sci. Instrum., 66 (1995) 1276.
- [12] M. Nomura and A.Koyama, KEK Internal, 93-1 (1993).
- [13] M. Nomura et al., KEK Report, 91-1 (1991).
- [14] M. Nomura and A. Koyama, in "X-ray Absorption Fine Structure", ed. by S. S. Hasnain, Ellis Horwood, Chichester, 1991, p.667.
- [15] M. Nomura and A. Koyama, J. Synchrotron Rad., 6 (1999) 182.
- [16] M. Nomura and A. Koyama, Nucl. Insrtum. Meth., A467-468 (2001) 733.

- [17] S. Sasaki, Rev. Sci. Instrum., 60 (1989) 2417.
- [18] M. Nomura and A. Koyama, KEK Report, 95-15 (1996).
- [19] Photon Factory Activity Report 2000, #18 (2001) A. 72
- [20] Photon Factory Activity Report 1994, #12 (1995) C-6.
- [21] Y. Satow and Y. litaka, Rev. Sci. Instrum., 60 (1989) 2390.
- [22] Photon Factory Activity Report 1999, #17 (2000) A 92.
- [23] Photon Factory Activity Report 1999, #17 (2000) A 103.
- [24] Y. Amemiya et al., Nucl. Instrum. Meth., 208 (1983) 471.
- [25] Photon Factory Activity Report 1994, #12 (1995) E-3.
- [26] N. Igarashi et al., AIP Conf. Proc., 879 (2007) 812.
- [27] N. Igarashi et al., J. Synshrotron Rad., 15 (2008) 292.
- [28] R.F. Garret et al., Rev. Sci. Instrum., 66 (1995) 1351.
- [29] H. Konishi et al., Nucl. Insrtum. Meth., A372 (1996) 322.
- [30] T. Kikegawa et al., Rev. Sci. Instrum., 66 (1995) 1335. [31] T. Mori et al., AIP Conf. Proc., 705 (2004) 255.
- [32] H. Kawata et al., AIP Conf. Proc., 705 (2004) 663.
- [33] Y. Inada et al. AIP Conf. Proc., 879 (2007) 1230. [34] M. Nomura et al., AIP Conf. Proc., 882 (2007) 896.
- [35] S. Nozawa et al., J. Synchrotron Rad., 14 (2007) 313.

Table 4 Specifications of VUV and soft X-ray beamline optics.

Beamline	Acceptance or H × V (mrad) Undulator Parameters	Type of Monochromator	Groove Density (ℓ/mm)	Energy Range (eV)	Beam Size H × V (mm)	Resolving Power (E/△E) Photon Flux (photons/s)	Reference
BL-1C*	5 × 3	Varied-Line-Space Plane Grating	300 600 1200	20 ~ 60 40 ~ 120 80 ~ 240	1 × 1	1000 ~ 10000 10 ¹¹ ~ 10 ⁹	1
BL-2A Undulator	$K = 0.5 \sim 2.2$ $\lambda_u = 6 \text{ cm}$	Double Crystal InSb (111), Si (111)		1740 ~ 5000	< 1φ	2000, 8000 10 ¹¹	2 - 5
BL-2C Undulator	$\label{eq:K} \begin{array}{l} K = 0.55 \sim 2.2 \\ \lambda_{u} = 6 \ \text{cm} \end{array}$	Varied-Line-Space Plane Grating	1000 2200	250 ~ 1400	0.9 × 0.1	5000 ~ 10000 10 ¹¹ ~ 10 ¹⁰	6 - 8
BL-3B	10 × 2	Grazing Incidence R = 24 m α + β = 165°	200 600 1800	10 ~ 280	< 2φ	200 ~ 3000 10 ¹² ~ 10 ⁹	9, 10
BL-7A [RCS]	6 × 1	Varied-Line-Space Plane Grating	300 650	50 ~ 1300	2.5 × 0.5	1000 ~ 9000 10 ¹² ~ 10 ⁹	11
BL-7B [RCS]	6 × 4	1m Seya-Namioka	1200 2400	5 ~ 50	1 × 1	1000	12
BL-11A	5 × 1	Varied-Line-Space Plane Grating	300 800 1200	70 ~ 1900	2 × 1	500 ~ 5000 10 ¹² ~ 10 ⁹	13 - 16
BL-11B	4 × 0.6	Double Crystal InSb (111), Ge (111)		1760 ~ 3910	5 × 2	2000 10 ¹⁰	4, 17, 18
BL-11C	4.8 × 3	1m Seya-Namioka	1200	4 ~ 35	~1¢	1000	19
BL-11D	4 × 2	Grazing Incidence Varied Deviation-angle On-Blaze Mount $R_1 = 52.5 \text{ m} R_3 = 22.5 \text{ m}$	2400	60 ~ 245 200 ~ 900	1 × 0.1	2000 10 ¹¹	20
BL-12A	2.2 × 0.34	Grazing Incidence R = 2 m α = 88°	1200	30 ~ 1000	2 × 3	1000 10 ⁹	21
BL-13C* Undulator	$\label{eq:K} \begin{array}{l} K = 0.3 \sim 4.2 \\ \lambda_{u} = 18 \ \text{cm} \end{array}$	Grazing Incidence R = 50 m α + β = 173.2°	350 750	70 ~ 500 150 ~ 1000	5 × 1	1000 ~ 6000 10 ¹² ~ 10 ¹⁰	22, 23
BL-16A Undulator	$\begin{split} &K_{\max} = 2.37\\ &(\text{Circular Polarization})\\ &K_{\max} = 3.12\\ &(\text{Horizontal Linear Polarization})\\ &K_{\max} = 1.98\\ &(\text{Vertical Linear Polarization})\\ &K_{\max} = 1.73\\ &(\text{45-deg Linear Polarization})\\ &\lambda_{\text{u}} = 5.6\ \text{cm} \end{split}$	Variable-included-angle varied-line-spacing plane grating	500 1000	250 ~ 1500	~0.2 × 0.1	4000 ~ 8000 10 ¹² ~ 10 ¹¹	31
BL-18A (ISSP)	2×2	Grazing Incidence R = 3 m α + β = 160° R = 6.65 m α + β = 167.5°	300 600 1200	15 ~ 150	< 1φ	1000~2000 10 ¹¹ ~10 ⁹	24

Beamline	Acceptance or H × V (mrad) Undulator Parameters	Type of Monochromator	Groove Density (ℓ/mm)	Energy Range (eV)	Beam Size H × V (mm)	Resolving Power (E/ΔE) Photon Flux (photons/s)	Reference
BL-19A Revolver Undulator (ISSP)	$K = 1.0 \sim 9.0$ $\lambda_u = 16.4 \text{ cm}$ $K = 0.5 \sim 1.25$ $\lambda_u = 5 \text{ cm}$ $K = 0.5 \sim 2.5$	Grazing Incidence $R = 2 m \alpha + \beta = 160^{\circ}$ $R = 4 m \alpha + \beta = 170^{\circ}$	600 1200 600 1200	12 ~ 250	< 0.7ø	1000 10 ¹²	25, 26
BL-19B Revolver Undulator (ISSP)	$\lambda_{u} = 7.2 \text{ cm}$ $K = 1.0 \sim 5.0$ $\lambda_{u} = 10 \text{ cm}$	Varied-Line-Space Plane Grating	800 2400	10 ~ 1200	< 0.5¢	400~4000 10 ¹² ~10 ¹¹	26 - 28
BL-20A	28 × 5	3m Normal Incidence	1200 2400	5 ~ 40	2 × 1	300 ~ 30000 10 ¹² ~ 10 ⁸	29
BL-27A	5 × 0.5	Double Crystal InSb (111)		1800 ~ 4000		2000	30
BL-28A/B Helical Undulator	$K_x = 0.23 \sim 3$ $K_y = 0.23 \sim 6$ $\lambda_u = 16 \text{ cm}$	Varied-Line-Space Plane Grating	400	30 ~ 300	0.15 × 0.05	30000 10 ¹²	31

RCS Research Center for Spectrochemistry, the University of Tokyo ISSP Institute for Solid State Physics, the University of Tokyo

* shutdown during FY2008.

REFERENCES

- [1] K. Ono et al., Nucl. Instrum. Meth., A467-468 (2001) 573.
- [2] H. Maezawa et al., Nucl. Instrum. Meth., A246 (1986) 310.
- [3] Y. Kitajima et al., Rev. Sci. Instrum., 63 (1992) 886.
- [4] Y. Kitajima, J. Elec. Spec. Relat. Phenom., 80 (1996) 405.
- [5] Y. Kitajima, J. Synchrotron Rad., 6 (1999) 167.
- [6] Y. Yan and A. Yagishita, KEK Report, 95-9 (1995).
- [7] M. Watanabe et al., Proc. SPIE, 3150 (1997) 58.
- [8] M. Watanabe et al., Nucl. Instrum. Meth., A467-468 (2001) 512.
- [9] A. Yagishita et al., Nucl. Instrum. Meth., A306 (1991) 578.
- [10] S. Masui et al., Rev. Sci. Instrum., 63 (1992) 1330.
- [11] K. Amemiya et al., J. Elec. Spectrosc. Relat. Phenom., **124** (2002) 151.
- [12] H. Namba et al., Rev. Sci. Instrum., 60 (1989) 1917.
- [13] K. Amemiya et al., J. Synchrotron Rad., 3 (1996) 282.
- [14] K. Amemiya et al., Proc. SPIE Proceedings, 3150 (1997) 171.
- [15] Y. Kitajima et al., J. Syncrotron Rad., 5 (1998) 729.

- [16] Y. Kitajima et al., J. Elec. Spectrosc. Relat. Phenom., 101-103 (1999) 927.
- [17] T. Ohta et al., Nucl. Instrum. Meth., A246 (1986) 373.
- [18] M. Funabashi et al., Rev. Sci. Instrum., 60 (1989) 1983.
- [19] Photon Factory Activity Report 1982/1983, (1984) V-15.
- [20] Photon Factory Activity Report 1997, #15 (1998) A 101.
- [21] Photon Factory Activity Report 1992, #10 (1993) I-2.
- [22] N. Matsubayashi et al., Rev. Sci. Instrum., 63 (1992) 1363.
- [23] H. Shimada et al., Rev. Sci. Instrum., 66 (1995) 1780.
- [24] S. Suzuki et al., Activity Report of SRL-ISSP, 60 (1989).
- [25] A. Kakizaki et al., Rev. Sci. Instrum., 60 (1989) 1893.
- [26] A. Kakizaki et al., Rev. Sci. Instrum., 63 (1992) 367.
- [27] M. Fujisawa et al., Nucl. Instrum. Meth., A467-468 (2001) 309.
- [28] M. Fujisawa et al., Nucl. Instrum. Meth., A467-468 (2001) 313.
- [29] K. Ito et al., Rev. Sci. Instrum., 66 (1995) 2119.
- [30] H. Konishi et al., Nucl. Instrum. Meth., A372 (1996) 322.
- [31] K. Amemiya and T.Ohta, J. Synchrotron Rad., 11 (2004) 171.