Chemistry

EXAFS analysis of activity site for glycerol hydrogenolysis reaction

Shuichi KOSO^{*1}, Naoyuki UEDA¹, Yasunori SHINMI¹

Kazu OKUMURA², Kimio KUNIMORI¹ Keiichi TOMISHIGE¹

¹Institute of Materials Science, Univ. of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

² Department of Materials Science, Tottori Univ., Koyama-cho, Minami, Tottori 680-8552, Japan

Introduction

The grouping importance in the production of nonpetroleum chemicals for a substitute for petroleum and sustainability has led to the development for the transformation of non food biomass. A target of the nonpetroleum chemicals is oxygenates such as terminal-diols. Terminal-diols will be used as monomers for the production of polyesters and polyurethanes. It has been recently reported that modification of Rh/SiO₂ with Re species is selective for the hydrogenolysis of glycerol, although it has a problem in the catalyst stability. In this research, we carried out the characterization of modification of Rh/SiO₂ with Mo species which shows high activity in the hydrogenolysis of glycerol to 1,3propanediol. In the reaction, Rh-MoO_x/SiO₂'s activity is little lower than Rh-ReO_x/SiO₂'s one. However, unlike Rh-ReO_x/SiO₂, Rh-MoO_x/SiO₂ can reuse in the reaction.

<u>Experimental</u>

Supported Rh-MoOx catalyst was prepared using the sequential (two-step) impregnation method. Firstly RhCl₃·3H₂O aq. was impregnated to SiO₂ and dried catalyst at 383 Κ for 12 h. Secondary, $(NH_4)_6Mo_7O_{12}\bullet 4H_2O$ aq. was impregnated Rh/SiO_2 catalyst and then after dried at 383 K for 12 h, calcined at 773 K in air for 3 h. The catalyst was pressed into selfsupporting 7 mm-diameter wafers under atmosphere, followed by the treatment, with H₂ at 393 K for 1 h in the cell. We also measured the EXAFS of the catalysts after the reaction of glycerol. The glycerol hydrogenolysis reaction was performed using the autoclave. Therefore, after the reaction, the H₂ pressure was decreased to some extent and the autoclave was opened in a glove box filled with nitrogen. The used catalysts, after separation, were transferred again to the measurement cell. Mo K-edge EXAFS spectra were measured by transmission mode at room temperature. After back ground subtraction, k^3 weighted EXAFS functions were Fourier transformed into R space and the one or two-shell fitting were analyzed by curve fitting.

Results and Discussion

Fig. 1 shows Fourier transform of Mo *K*-edge EXAFS oscillations of Rh-MoO_x/SiO₂ after H₂ reduction and after glycerol hydrogenolysis reaction. The FT of Mo foil, Na₂MoO₄ are shown as a reference for Mo-Mo bond or Mo-O bond, respectively. Theoretical functions for the Mo-Rh bond were calculated using the FEFF8.2 program.

For Rh-MoO_x/SiO₂, a peak between 0.13 and 0.28 nm was observed in the FT; they are assignable to the Mo–O and Mo–Rh (or Mo) bond. In the EXAFS analysis, it is impossible to distinguish between Rh and Mo as a backscattering atom theoretically. Table 1 lists their curve fitting results. From the result, it was suggested that Rh-MoO_x/SiO₂ after H₂ reduction and after glycerol hydrogenolysis reaction were very analogous. This means the catalyst in the glycerol hydrogenolysis reaction is reduced by H₂ gas in the autoclave. And, to be observed Mo–Rh bond in the EXAFS of Rh–MoO_x/SiO₂ means that there is an interaction between Mo and Rh. In addition, the two Mo–O bonds which were observed in the EXAFS of Rh-MoO_x/SiO₂ mean that Mo was not completely reduced in the reaction.

Fig. 1 Results of Fourier transform of k^3 -weighted Mo *K*-edge EXAFS oscillation of Rh-MoO_x/SiO₂ after the H₂ reduction and glycerol hydrogenolysis reaction, Na₂MoO₄ and Mo foil. The results of Na₂MoO₄ and Mo foil are also shown as a reference.

Table 1 Curve fitting of Mo K-edge EXAFS of various catalysts.

Catalyst	Pretreatment	Shells	CN	<i>R</i> / 10 ⁻¹ nm
Rh- MoO _x /SiO ₂ ^a	after reduction	Mo-O	0.5±1.0	2.00 ± 0.170
		Mo-Rh (or Mo)	3.7±1.4	2.60±0.010
Rh- MoO _x /SiO ₂ ^a	after	Mo-O	1.1±0.7	2.08 ± 0.050
	glycerol reaction	Mo-Rh (or Mo)	3.2±0.6	2.64±0.010
Na ₂ MoO ₄	-	Mo-O	4.0	1.78
Mo foil	-	Mo-Mo	8.0	2.72
-				

^a Mo/Rh=0.125

* s-sk_0513@ims.tsukuba.ac.jp