28A/2006S2-001

Three-dimensional electronic structure of iron pnictides observed by angleresolved photoemission spectroscopy

Walid MALAEB*¹, Teppei YOSHIDA^{1,2}, Atsushi FUJIMORI¹, Masato KUBOTA³, Kanta ONO³, Kunihiro KIHOU⁴, Parasharam M. SHIRAGE⁴, Hijiri KITO⁴, Akira IYO^{2,4}, Hiroshi EISAKI^{2,4}, Yasuyuki NAKAJIMA^{2,5}, Tsuyoshi TAMEGAI^{2,5}, Ryotaro ARITA^{2,5}.
¹ Department of Complexity Science and Engineering and Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
²JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075

³KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

⁴National Institute of Advanced Industrial Science and Technology (AIST),

Tsukuba, Ibaraki 305-8568, Japan

⁵Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

Introduction

In order to understand the occurrence of superconductivity in iron pnictides, many aspects of their electronic structure are still to be uncovered, and angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for this purpose. In this work, we have performed an ARPES study on the parent compound $BaFe_2As_2$ and the Co-doped superconducting compound $BaFe_{1.86}Co_{0.14}As_2$ (Ba122).

Results and discussion

The ARPES intensity plot in energy-momentum (E-k) space along cuts 1 (across Γ) and 2 (across X) for Ba122 taken at hv = 60 eV are shown, respectively, in panels (a) and (b) of Fig. 1. In the figure, $k_{//}$ denotes momenta along cut 1 or cut 2. Panel (a) shows hole-like bands crossing E_F and giving rise to the hole-like Fermi surfaces (FSs) around Γ . This is consistent with previous ARPES reports on these compounds [1]. However, a tiny structure having the features of an electron pocket is observed around Γ in this case. We have also investigated the possible threedimensionality in the electronic structure (k_z dependence) predicted by most of the band-structure calculations on iron pnictides, in particular on 122 compounds [2]. From the photon-dependent ARPES data we have observed that the band dispersions and FSs around the BZ center strongly depend on the photon energy as can be seen by comparing panels (a) and (c) in Fig. 1. However, the ARPES data taken at the BZ corner (X point) suggest weak photon energy dependence as can be seen by comparing panels (b) and (d) of Fig. 1. The FS image plots at BZ center and corner are shown, respectively, in panels (e) and (f) of Fig. 1. It is clear that the FS at BZ center shows strong modulation along the k_z direction which suggests the three-dimensionality in the electronic structure as predicted by the band-structure calculations. However, the FS at BZ corner shows much weaker threedimensionality. We have observed similar behavior in the Co-doped superconducting compound BaFe_{1.86}Co_{0.14}As₂

(not shown here). These observations suggest that the antiferromagnetism and superconductivity (SC) in the pnictides may have to be considered including the orbital-dependent 3D electronic structure, where FS nesting is not necessarily strong.

Fig. 1. ARPES E-k intensity maps for BaFe₂As₂ taken at T=10 K. (a), (c): Along cut 1 (across Γ). (b), (d): Along cut 2 (across X). The photon energies are indicated inside each panel. The black curves are guides to the eye. (e), (f): Fermi surface images of BaFe₂As₂ in the k_{//}-k_z plane obtained from the hv-dependent ARPES data taken, respectively, along cuts 1 and 2. Both inner and outer black dots represent the k_F values determined from MDC peak positions at E_F.

References

[1] K. Terashima et al., arXiv: 0812.3704.

[2] D. J. Singh, Phys. Rev. B 78, 094511 (2008).

* malaeb@wyvern.phys.s.u-tokyo.ac.jp