Electronic Structure of Condensed Matter

Measurement of spin, orbital and total magnetic form factor of 3d-4d alloy Pd₃Co by X-ray magnetic diffraction

Ayako SATO¹, Yoshiaki OBA¹, Kosuke SUZUKI¹, Ryouta NAGAYASU¹, Hiroshi SAKURAI¹, Hiromichi ADACHI^{2\$}, Keichi HIRANO² and Masahisa ITO^{*1} ¹Graduate School of Eng., Gunma Univ., Tenjin-cho 1-5-1, Kiryu, Gunma 376-8515, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Transition metals are applied to materials of high-density magnetic-recording media. Pd/Co multilayer artificial lattice, which is composed of 3d and 4d transition metals, shows perpendicular magnetic anisotropy. The aim of this research is to study magnetic properties of Pd-Co alloy system through the magnetic form factor measured by the X-ray magnetic diffraction (XMD) measurement of Pd₃Co crystal.

Pd₃Co has the Cu₃Au type crystal structure, which shows order-disorder type structural transformation. The sample crystal in this study is known to be in the disorder state by the preliminary experiment.

Experiments

The XMD experiment has been performed on the beamline 3C. Elliptically polarized white X-ray beam was irradiated on the sample and the Bragg angle at the sample was fixed to 45°. The diffracted X-rays were measured with a pure-Ge SSD. Magnetic field of 2.15T was applied to the sample with an electromagnet.

The angle α between the incident X-ray direction and the sample magnetization is important parameter in the XMD measurement. The experimental configuration of α of 135°, 0° and 90° enables us to measure the spin, orbital and total magnetic form factor ($\mu_{\rm S}(k)$, $\mu_{\rm L}(k)$ and $\mu_{\rm total}(k)$), respectively.

Results and Discussion

The measured spin, orbital and total magnetic form factor are shown in Fig. 1, Fig. 2 and Fig. 3 respectively. We have obtained magnetic form factors for ~20 reciprocal lattice points. In each figure the data points of the form factor seem to be fitted well with a monotonic decreasing curve. So the next step of the data analysis would be to estimate the values of spin, orbital and total magnetic moments of Pd₃Co by applying the theoretical curves of dipole approximation for $\mu_{\rm S}(k)$, $\mu_{\rm L}(k)$ and $\mu_{\rm total}(k)$. Moreover, in the near future we have a plan to study distribution of the spin, orbital and total magnetic moments in real space by using Fourier transform of the form factors.

^{\$}Present address: Sch. Gen. Edu., Shinshu Univ., Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan. *itom@phys.sci.gunma-u.ac.jp