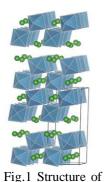
Electronic Structure of Condensed Matter

XPS study of Sm₂Ti₂O₇ thin films of layered perovskite structure


Sawako OHNO^{*1}, Kunitada HATABAYASHI¹, Akira CHIKAMATSU¹, Yasushi HIROSE^{1, 2}, Toshihiro SHIMADA^{1, 2}, Tetsuya HASEGAWA^{1, 2}

¹Univ.of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

²KAST, Sakado, Takatsu-ku, Kawasaki 213-0012, Japan

Introduction

Layered perovskite oxides $Ln_2Ti_2O_7$ (Ln = La, Pr, Nd) have attracted much attention for their ferroelectricity with very high $T_{\rm C}$ (1500 °C for La₂Ti₂O₇). They are the n = 4 members of the homologous series of layered perovskites which have a general formula $A_n B_n O_{3n+2}$. With respect to the usual perovskite structure, Ln₂Ti₂O₇ layered perovskite structure has an extra oxygen layer inserted along perovskite (110) plane after every four (n =

 $Ln_2Ti_2O_7$ layered

perovskites

4) distorted perovskite units as shown in Fig. 1.

On the other hand, Ln₂Ti₂O₇ with smaller size lanthanide atoms, such as Sm₂Ti₂O₇, are known to have a pyrochlore structure as the most stable phase.

Recently, we have succeeded in fabricating Sm₂Ti₂O₇ thin films of a layered perovskite structure on SrTiO₃ (110) substrates by pulsed laser deposition (PLD) method. In this study, X-ray photoelectron spectroscopy study has been performed to investigate the

valence states of the Sm and Ti atoms.

Experiment

Sm₂Ti₂O₇ epitaxial films of the layered perovskite structure were fabricated on SrTiO₃ (110) substrates by PLD method using a pyrochlore $Sm_2Ti_2O_7$ target. The substrate temperature was 800 °C and the oxygen partial pressure was 1×10^{-4} Torr. The film thickness was about 60 nm. The crystal structure and the growth orientation of the films were determined by X-ray diffraction analysis and cross-sectional TEM measurement. The films have the epitaxial layered perovskite structure with oxygen additional layers parallel to the surface of the substrates. The layer-by-layer growth of the films was confirmed by RHEED observation during deposition.

The X-ray photoelectron spectra of the samples were measured at BL-7A of the the Photon Factory, KEK.The photon energy of synchrotron radiation was 800eV.

Results

The valence states of Sm and Ti in $Sm_2Ti_2O_7$ have

been estimated by the core-level XPS results. Fig.2(a) shows the spectrum of Sm 4d core level. In this spectrum, only Sm³⁺ components are observed at the binding energies of 125 -1 42 eV. There is no Sm²⁺ component, which appears at the lower binding energy of 120 - 123 eV (ref. 1).

Fig. 2(b) shows the spectrum of Ti 2p doublet. There is only one component observed. The difference of binding energy between O 1s and Ti $2p_{3/2}$ levels is 71.4 eV, which is typical value for Ti⁴⁺ compounds (ref. 2).

The valence states determined from this XPS study, Sm^{3+} and Ti^{4+} , agree with the ones expected from the crystal structure obtained from XRD and TEM measurement, and thus support the growth of stoichiometric Sm₂Ti₂O₇ films.

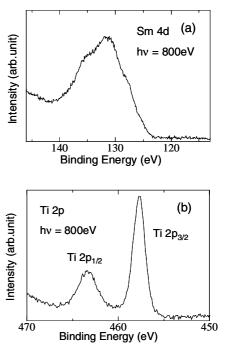


Fig.2 Core-level spectra of Sm 4d and Ti 2p

References

[1] Y. Ishii et al., J. Phys. Soc. Jpn. 62, 811 (1993). [2] V. V. Atuchin et al., J. Electron. Spectrosc. Relat. Phenon. 152, 18 (2006).

* s-ohno@chem.s.u-tokyo.ac.jp