Electronic Structure of Condensed Matter

High resolution angle-resolved photoemission study of SrVO₃ thin films

<u>S. Aizaki¹</u>, K. Yoshimatsu², S. Ideta¹, T. Yoshida¹, K. Horiba^{2,3}, H. Kumigashira^{2,3}, M. Oshima^{2,3}, A. Fujimori¹ ¹Deptartment of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ²Deptartment of Applied Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ³JST-CREST, Chiyoda-ku, Tokyo 102-0075, Japan

Introduction

Light transition-metal oxides (TMO's) such as perovskite-type Ti and V oxides are ideal systems to study the fundamental physics of electron correlation because they are prototypical Mott-Hubbard-type systems. To address the nature of electron correlation in light TMO's, photoemission spectroscopy measurement has provided rich information [1]. The V3d band dispersion and the Fermi surfaces of the three-dimensional Mott-Hubbard system SrVO₃ have been directly observed by angle-resolved photoemission spectroscopy (ARPES) [2]. Takizawa et al. have fabricated SrVO₃ thin films having atomically flat surfaces using the pulsed laser deposition (PLD) technique and studied its detailed electronic structure by in-situ ARPES measurements. Clear band dispersion not only in the coherent quasi-particle part but also in the incoherent part has been observed [3].

Experimental condition

We have performed a detailed ARPES study of *in-situ* prepared $SrVO_3$ thin films which have well-defined atomically flat surfaces. This ARPES experiments were carried out using a SES-2002 analyzer at BL-28A.The energy and momentum resolution was at 18 meV and ~0.5 deg, respectively. Measurements were performed at 15 K.

Results and Discussion

We have observed a sharp V3*d* band dispersion near Fermi level (E_F). The band dispersion measured at photon energy $h\nu = 74eV$ is shown in Fig.1(a). Real part of selfenergy shown in Fig. 1(c) was obtained by assuming LDA band as a bare band as shown in panel (b). "Kink" has been observed at low binding energy region (~ 60 meV) as in the case of high- T_c cuprate superconductors. This effect may be attributed to electron-phonon coupling, judging from the energy at which the kink has been observed. Moreover, a "high energy kink" has also been observed around 0.3eV below E_F .

Conclusion

We have performed ARPES studies of $SrVO_3$ thin films. Kink has been observed at ~ 60 meV in $SrVO_3$,

Fig.1 Quasi-particle dispersion of SrVO₃ along (0,0) to $(0,\pi)$ direction. (a) ARPES intensity as a function of energy and momentum. (b) Dispersion extracted from (a) by fitting MDCs. The inset shows the corresponding MDC width (FWHM). (c) Real part of electron self-energy. Arrows indicate fine features at ~ 60 meV and ~ 0.3 eV.

possibly due to the electron-phonon interaction similar to the case of the high- T_c cuprates. "High energy kink" may be present around 0.3eV below $E_{\rm F}$.

References

[1] A. Sekiyama et al., Phys. Rev. Lett. 93, 156402 (2004).

[2] T. Yoshida et al., Phys. Rev. Lett. 95, 146404 (2005).

[3] M. Takizawa et al., arXiv:0806.2231.

* aizaki@wyvern.phys.s.u-tokyo.ac.jp