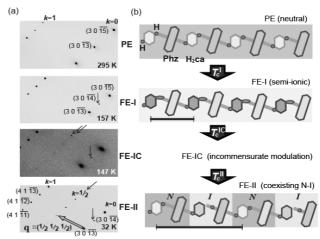
Successive phase transitions in organic ferroelectrics, phenazine-anilic acids

Reiji KUMAI^{*1}, Sachio HORIUCHI¹, Yoshinori TOKURA^{1,2} ¹AIST, Tsukuba, Ibaraki 305-8562, Japan ²The Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Introduction

Ferroelectrics have a spontaneous polarization that is switchable by an applied electric field, and have long constituted numerous technological applications such as capacitors, sensors, and information storages. Linear chain cocrystals of phenazine (Phz) with chloranilic acid (H_2 ca) and bromanilic acid (H_2 ba) have exhibited large polarization under small electric field in spite of the use of originally neutral and nonpolar constituents. Here we report the synchrotron x-ray diffractions studies on their successive phase transitions, indicating novel interplay between ferroelectricity and proton dynamics on hydrogen bonds.


Experiments

Synchrotron x-ray diffractions were collected on a Rigaku DSC imaging plate system by using Si-doublecrystal monochromatized radiation (λ = 0.9979 Å for Phz-H₂ba and 0.6873 Å for Phz-H₂ca) at the beam line BL-1A. Monochromatized beam was focused using a bent cylindrical mirror made of Si crystal coated with Rh, with a focused beam size of 0.3 (vertical) × 0.7 (horizontal) mm. Temperature of the crystal attached on a glass fiber was controlled under flow of helium gas.

Results and Discussion

According to the dielectric and pyroelectric properties, the Phz-H₂ca (Phz-H₂ba) undergo a transition from the paraelectric (PE) to ferroelectric (FE-I) phase at $T_c^{I} = 253$ (138) K and also additional transitions at $T_c^{IC} = 147$ (101) K and $T_c^{II} = 137$ (98) K. These phase transitions are characterized by the change of x-ray diffraction as shown in Fig. 1a. The sudden appearance of (h0l) (h + l = odd)reflections at T_c^{I} (Fig.1a) indicates the symmetry-breaking from the space group $P2_1/n$ to $P2_1$, posing the uniaxial polarity along the b-directions. The lowest-temperature ferroelectric (FE-II) phase $(T < T_c^{\text{II}})$ exhibits a doubled cell volume for Phz-H₂ca as proved by the additional spots at reciprocal wave vector $\mathbf{Q} = \mathbf{G} \pm \mathbf{q}$ with modulation wave vector $\mathbf{q} = (\frac{1}{2} \frac{1}{2} \frac{1}{2})$ for each **G**, a reciprocal-lattice wave vector of original cell. On the other hand, the distinct modulation wave vector **q**' of either $(\frac{1}{3} \frac{1}{3} 0)$ or $(\frac{1}{3} - \frac{1}{3} 0)$ (not shown) indicates a formation of threefold periodicity along the [110] or [110] direction for the Phz-H₂ba. In quite a narrow temperature interval, $T_c^{\text{IC}} > T > T_c^{\text{II}}$, there exists an incommensurately modulated (FE-IC) phase for both Phz-H₂ca and Phz-H₂ba crystals as seen in Fig. 1a.

As a clue for understanding the successive phase transitions, we recall that one of the two acidic protons is displacing toward a nearly centered position over O…H…N bond with disordered nature in the FE-I phase [2] (see Fig. 1b). Then, it is natural to expect that the unusually elongated thermal ellipsoids reflect the timeand/or space-averaged distribution between different equilibrium positions that would be occupied as a periodic order in the FE-II phase. For the case of Phz-H₂ca, half of displacing protons would be back to more neutral O-H···N form (N) and the rest forward to more ionic $O^- \cdots H - N^+$ form (I). Then, their alternation as ...N-I-N-I.. can constitute a doubled lattice periodicity of the FE-II structure. Similarly for the Phz-H₂ba crystal with the weaker ionicity, the observed threefold periodicity would reflect, for instance, a ...N-N-I-N-N-I.. sequence. As the intrinsic origin, we consider that the pK matching between the acid and base molecules should be crucial for such the fractional transformations from neutral to ionic form. For detail, see also ref. [3].

Fig. 1 (a) Synchrotron x-ray diffraction photographs representing the PE, FE-I, FE-IC, and FE-II phases and (b) schematic drawings of proton locations on acid-base supramolecular chain for $Phz-H_2ca$.

References

- [1] S. Horiuchi and Y. Tokura, Nat. Mater. 7, 357 (2008).
- [2] R. Kumai et al. J. Am. Chem. Soc. 129, 12920 (2007).
- [3] S.Horiuchi et al., Chem. Mater. 10.1039/b900987f (2009).
- * r-kumai@aist.go.jp