Structural studies on charge ordering in organic conductors based on a π -reduced donor DODHT

Hiroyuki NISHIKAWA*¹, Momoka HIGA², Ryusuke KONDO², Sei-ichi KAGOSHIMA²,

Akiko NAKAO³, Hiroshi SAWA^{3†}

¹Graduate School of Pure and Applied Sciences, University of Tsukuba,

Tsukuba, Ibaraki 305-8571, Japan

²Department of Basic Science, University of Tokyo, Kobama, Tokyo 153-8902, Japan

³Institute of Materials Structure Science, High Energy of Accelerator Research Organization,

Tsukuba, Ibaraki 305-0801, Japan

Introduction

Modification of the π -electron system of organic donor molecules in organic conductors leads to unique physical properties relating to the strong electron correlation, such as charge ordering and superconductivity. We synthesized a new donor molecule DODHT [(1,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene], in which the π -electron system is reduced compared with that of TTF derivatives, and succeeded in preparing new pressure-induced superconductors, β'' -(DODHT)₂X (X = PF₆, AsF₆, BF₄·H₂O) [1]. At ambient pressure, β'' -(DODHT)₂PF₆ exhibits phase transition to an insulator state accompanied by charge ordering (CO) with a stripe-type charge pattern along molecular side-by-side direction (a-axis) [2]. The DODHT salts with counter anions with same octahedral symmetry exhibts different electrical and magnetic behaviors; only the PF₆ and AsF₆ salts show superconductivity under pressure of above ca. 1.3 GPa, whereas the SbF₆ salt is semiconducting without any distinct anomaly accompanying insulator transition.

In order to investigate the difference in the physical properties of β "-DODHT salt with octahedral anions in different sizes, we carried out X-ray structural studies by synchrotron radiation and found difference in the superstructure resulting from the CO.

Results and Discussion

We have already found that the insulating phase of β'' -(DODHT)₂PF₆ is the CO state with a stripe-type charge pattern along *a*-axis by the observation of satellite reflections below transition temperature using monochromatized Mo Ka X-rays of 30 kV, 40 mA. In the CO phase, the unit cell becomes double along *a*-axis due to CO and satellite spots associated with the 2*a* superlattice structure should be observed. The same satellite reflections were observed in the oscillation photograph taken at 40 K using synchrotron radiation at BL1B as shown in Figure 1, confirming the CO in this salt.

On the other hand, in β "-(DODHT)₂AsF₆, very weak satellite reflections corresponding to 2*a* superstructure similarly to the PF₆ salt was observed at 210 K. Intensity of the satellite peak increased with decreasing temperature, and the wave vectors varied to merge to strong diffuse reflections at $(0.5a^*, 0.5b^*, 0)$ below 80 K. The result is completely different from that for the PF₆ salt, indicating strong disorder and different charge pattern of the CO state emerged in the AsF₆ salt.

Figure 1. X-ray oscillation photograph taken at 40 K of β "-(DODHT)₂PF₆. Reflections indicated by white arrows are satellite spots of $q = a^{*/2}$.

In summary, comparison of the temperature dependence of satellite reflections resulting from the CO between β'' -(DODHT)₂PF₆ and β'' -(DODHT)₂AsF₆ indicates that the different CO state was realized in the AsF₆ salt, which causes the difference in the electrical and magnetic behavior between two salts.

References

[1] H. Nishikawa et al., J. Am. Chem. Soc. 124, 730 (2002); Chem. Commun. 494 (2003).

[2] H. Nishikawa et al., Phys. Rev. B 72, 052510 (2005).

[†]Present address: Dep. of Material Science and Eng., Nagoya Univ., Nagoya 464-8601, Japan.

* nishikaw@chem.tsukuba.ac.jp