XPS Study on Charge Ordering type Ferroelectric YbFe₂O₄ Thin Films

Takeshi YOSHIMURA^{1*}, Toshiyuki MATSUI¹, Akihiro IWASE¹, Hiroyuki YAMAMOTO², Norie HIRAO², Yuji BABA² ¹Osaka Prefecture University, Sakai, Osaka 599-8531, Japan ¹Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 599-8531, Japan

Introduction

Recently, rare-earth iron oxide system RFe₂O₄ (R=rare earth Dy to Lu and Y) has received much attention as novel ferroelectrics. RFe₂O₄ has a rhombohedral crystal structure consisting of an alternate stacking of triangular lattices of rare-earth, iron and oxygen. An equal amount of Fe²⁺ and Fe³⁺ ion occupy crystallographically equivalent sites. Therefore, a charge interaction between iron ions, Fe²⁺ and Fe³⁺, leads to charge ordering state on the triangle lattice. Recently, Ikeda et al. reported the ferroelectricity by the charge ordering in LuFe₂O₄.¹ This finding is quite interesting from both physical and engineering points of view. However, it is reported that RFe₂O₄ phase is stable at extremely low oxygen partial pressure $(3.9 \times 10^{-6} \sim 1.2 \times 10^{-9} \text{ torr})$ and high temperature (~1200°C). Therefore exact control of oxygen partial pressure and quench are required to synthesize RFe₂O₄.

We have attempted to synthesize RFe_2O_4 in thin film form, because it can be expected that epitaxial effect on the thin film growth encourage the formation of RFe_2O_4 at more moderate condition and RFe_2O_4 thin films are useful for device application. In this study, we focused on the thin film growth of $YbFe_2O_4$, which can be synthesized at high oxygen pressure compared to other RFe_2O_4 .

Experiments

 $YbFe_2O_4$ thin films were grown on YSZ(111) single crystal substrates by pulsed laser deposition method. The crystal structure was characterized using x-ray diffraction and reciprocal space mapping. The mixed valence state of Fe ions (Fe²⁺/Fe³⁺) was evaluated using x-ray photoelectron spectroscopy (XPS).

Results and Discussion

The phase diagram of Yb₂O₃-Fe₂O₃-Fe system indicates that YbFe₂O₄ is synthesized at high temperature and reductive atmosphere. Therefore, the deposition was carried out over 800 °C and at low oxygen partial pressure (~1×10⁻⁹ torr). As a result, it was found that YbFe₂O₄ thin films are obtained on YSZ substrates at a growth temperature of 900 °C which is 300 °C lower than the temperature where YbFe₂O₄ is thermodynamically stable. A large area reciprocal space mapping for the YbFe₂O₄ thin films is shown in Fig. 1. The diffraction spots from the films are identified as YbFe₂O₄ and growth orientation relationship of YbFe₂O₄ [0001]//YSZ [111] and YbFe₂O₄ [11-20]//YSZ [1-10] was determined.

Fig. 1 Large area reciprocal space mapping for the $YbFe_2O_4$ thin film on a YSZ(111) substrate (Arrows indicate diffraction spots from $YbFe_2O_4$)

Fig. 2 Fe $2p_{3/2}$ core level XPS spectrum for the YbFe₂O₄ thin film.

To reveal the valence state of Fe ions, Fe $2p_{3/2}$ core level is evaluated using a synchrotron soft x-ray radiation of hv=3100 eV. The result is shown in Fig. 2. The Fe $2p_{3/2}$ core level is reported at 709.5 eV for Fe²⁺ and at 711.0 eV for Fe³⁺.² As can be seen in the XPS spectrum, Fe $2p_{3/2}$ core level of the YbFe₂O₄ thin films is not separated from each other but are positioned between these two values. Moreover, Fe $2p_{3/2}$ core level of 710.15 eV is close to the reported value of that for LuFe₂O₄ ceramic (710.2 eV). Therefore this results indicates that the valence state of Fe ions in the YbFe₂O₄ thin films is mixture of Fe²⁺ and Fe³⁺. Further investigations to reveal the ratio of Fe²⁺ and Fe³⁺ is in progress to characterize the oxygen nonstoichiometry, which has a large effect on the ferroelectricity of YbFe₂O₄.

References

- [1] N. Ikeda et al. Nature, 436, 1136 (2005).
- [2] J. Y. Park et al., Appl. Phys. Lett., 91, 152903 (2007).

^{*} tyoshi@pe.osakafu-u.ac.jp