Local structures of cubic EuTa(O,N)₃ oxynitride substituents

Shinichi KIKKAWA^{*1}, Teruki MOTOHASHI¹, Yuji MASUBUCHI¹, Takashi TAKEDA², Kei-ichiro MURAI³, Akira YOSHIASA⁴ ¹Hokkaido Univ., Sapporo 060-8628, Japan ²NIMS, Ibaraki 305-0044, Japan ³Tokushima Univ., Tokushima 770-8506, Japan ⁴Kumamoto Univ., Kumamoto 860-8555, Japan

Introduction

Tantalum oxynitride perovskites ATaO2N (A: alkaliearth and rare-earth elements) have attracted much attention due to their unusual dielectric properties [1]. BaTaO₂N and SrTaO₂N exhibit bulk permittivity (κ) as large as 3000 ~ 5000. The dielectric properties seem to be related to the crystal structure, as κ of orthorhombic CaTaO₂N is much smaller (\approx 30) than that of the Baanalogue with cubic symmetry. For SrTaO₂N, on the other hand, the structure was refined based on either tetragonal [1,2] or cubic model [3]. It has not been well understood parameters are predominant what material for determining the crystal structure of tantalum oxynitride perovskites. To address this issue, we focused on $EuTa(O,N)_{2}$. This compound can be a structural reference for $SrTaO_3N$, since the ionic radius of Eu^{2+} is close to that of Sr²⁺. In the present study, the structure and anionic composition of EuTa(O,N)₃ were investigated. A series of the $Ca_{1-x}Eu_{x}Ta(O,N)_{3}$ system was synthesized and characterized in order to clarify how the properties are influenced upon substituting Eu for Ca.

Experimental

 $Ca_{1,x}Eu_{x}Ta(O,N)_{3}$ samples with x = 0, 0.2, 0.4, 0.6, 0.8,and 1.0 were synthesized by ammonia nitridation at 1000°C *via* a citrate precursor route, as described elsewhere [4]. Nitrided products were characterized by Xray powder diffraction (XRD). The anionic composition was determined using an oxygen/nitrogen analyzer. X-ray absorption of Eu L_{III}- and Ta L_{III}-edges was measured in transmission mode at the beam line 9C in Photon Factory.

Results and discussion

XRD analysis indicated that all of the Ca_{1,x}Eu_xTa(O,N)₃ products are of single phase. The products with x < 0.4were apparently orthorhombic, while those with $x \ge 0.4$ crystallized in a cubic structure. The anionic composition was found to be essentially O₂N and independent of Eu content (*x*). Figure 1 shows Eu L_{III}-edge XANES spectra of Ca_{1,x}Eu_xTa(O,N)₃. The spectra consist of two peaks in all the Eu-containing products. Since the low-energy ($E \approx$ 6970 eV) and high-energy ($E \approx$ 6980 eV) peaks are similar to those for the EuCl₂ and Eu₂O₃ standards, the former and the latter are accordingly attributed to the $2p_{3/2}$ $\rightarrow 5d$ transition of Eu²⁺ and Eu³⁺, respectively. Therefore, europium ions are in mixed valent between +2 and +3. The Eu³⁺ peak is large in x = 0.2 because its ionic size is small enough to occupy the Ca²⁺ site, while its intensity systematically decreases with increasing x. In x = 1.0(EuTaO₂N), europium is mainly divalent with a small amount of trivalent species.

The Eu²⁺/Eu³⁺ coexistence is easily explained if the Eucontaining products are assumed to be slightly offstoichiometric with N-rich compositions. The presence of excess nitride anions in EuTaO₂N was indeed reported previously [5]. Another possible explanation is that tantalum is also mixed-valent between Ta⁴⁺ and Ta⁵⁺ so as to compensate extra positive charges of europium. It was not possible to determine the Ta valence by means of XANES spectroscopy without ambiguity, because the positions of L_{III}-edge are close to each other for Ta⁴⁺ and Ta⁵⁺.

Fig. 1 Eu L_{III} -edge XANES spectra of $Ca_{1,x}Eu_xTa(O,N)_3$ with x = 0.2, 0.4, 0.6, 0.8, and 1.0. The reference spectra of Eu_2O_3 (Eu^{3+}) and $EuCl_3$ (Eu^{2+}) are also shown.

References

- [1] Y.-I. Kim et al., Chem. Mater. 16, 1267 (2004).
- [2] R. Marchand *et al.*, Rev. Int. Hautes Temp. Refractaires 23, 11 (1986).
- [3] F. Pors *et al.*, Rev. Int. Hautes Temp. Refractaires 24, 239 (1987).
- [4] Y. Hamade et al., Mater. Res. Bull. (2009) submitted.
- [5] A. B. Jorge *et al.*, J. Am. Soc. Chem. 130, 12572 (2008).

* kikkawa@eng.hokudai.ac.jp