Materials Science

Structural properties of the incommensurate organic superconductor (MDT-TS)(AuI₂)_{0.441}

Tadashi KAWAMOTO^{*1}, Hisataka Endo¹, Yoshimasa BANDO¹, Takehiko MORI¹, Toru KAKIUCHI², Hiroshi SAWA^{2,3}, Kazuo TAKIMIYA⁴ and Tetsuo OTSUBO⁴ ¹Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

²Department of Materials Structure Science, The Graduate University of Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan

³Institute of Materials Structure Science, High Energy of Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

⁴Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Introduction

In organic superconductors, the ratios of the donor molecules to anions are represented by an integer (typically 2:1) [1]. By contrast, the MDT-TSF (methylenedithio-tetraselenafulvalene) series salts are incommensurate pressure organic ambient superconductors and the charge transfer degrees deviate from 0.5 [2]. (MDT-TS)(AuI₂) $_{0.441}$, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene, shows a metal-insulator (M-I) transition at $T_{\rm MI} = 50$ K despite of the basically same crystal structure as those of the MDT-TSF superconductors [3]. The ground state of this salt changes from an incommensurate antiferromagnetic insulating state with $T_N = 50$ K to a superconducting phase at 3.2 K under 1.05 GPa [3]. We have observed an incommensurate structural modulation in the donor lattice with $q = 0.114a^*$ [4]. The present paper reports the temperature dependence of the structural modulation of (MDT-TS)(AuI₂)_{0.441}.

Results and Discussion

Figure 1 shows the synchrotron radiation x-ray oscillation photograph at 290 K. This photograph clearly displays incommensurate layer lines. We distinguish the donor lattice and the anion lattice by indices h and h', respectively. There are clear satellite spots at $h \pm \xi$.

FIG. 1. X-ray oscillation photograph at 290 K.

Figure 2 shows the temperature dependence of ξ estimated from the x-ray oscillation photographs. Although ξ is independent from the temperature below room temperature, ξ shows a step like increase below 50 K. This means that the modulation period slightly changes at the M-I transition. However, the average structure without the modulation does not change.

In summary, we have found the incommensurate structural modulation period changes at the M-I transition temperature. The relationship between the modulation structure and the antiferromagnetic ordering is not clear.

Figure 2 Temperature dependence of the wave number of satellite spots.

References

[1] T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd Ed. (Springer, Berlin, 1998).

[2] K. Takimiya et al., Angew. Chem. Int. Ed. Engl. 40, 1122 (2001); Chem. Mater. 15, 3250 (2003); *ibid* 15, 1225 (2003); T. Kawamoto et al., Phys. Rev. B 65, 140508(R) (2002); *ibid* 71, 172503 (2005); J. Phys. Soc. Jpn. 74, 1529 (2005).

[3] K. Takimiya et al., Chem. Mater. **16**, 5120 (2004); T. Kawamoto et al., Phys. Rev. B **71**, 052501 (2005); T. Kawamoto et al., Phys. Rev. B **77**, 224506 (2008).

[4] T. Kawamoto et al., Photon Factory Activity Report 2004 #22 Part B, 161 (2005).

* kawamoto@o.cc.titech.jp