XAFS studies on the supported Ni catalysts prepared from Ni colloids

Nobuyuki ICHIKUNI*, Jun NAGANUMA, Takayoshi HARA, Shogo SHIMAZU Chiba University, Inage-ku, Chiba 263-8522, Japan

Introduction

It is well known that Ni catalysts are very useful for many catalytic reactions. But the size of Ni particles on catalyst is typically 20-100 nm and the preparing the smaller Ni particles on the support is desired. Colloidal metal particles have been expected as a superior catalyst precursor for supported solid catalyst because of their small particle size and the narrow size distribution.

In this study, we prepared Ni metal colloid by using *t*-BuONa as a stabilizer and used for the Ni catalyst precursor. Non-porous SiO_2 as well as meso-porous SiO_2 (HMS) were used as the support. The supported Ni catalysts were reduced by hydrogen and were characterized by XAFS analysis.

Experimental

Ni colloid was synthesized by reduction of Ni(OAc)₂ using NaH-*t*-BuONa in refluxing THF at 336 K [1]. HMS support was prepared as in the literature [2]. Supported Ni catalysts were prepared by impregnating HMS or SiO₂ (Aerosil, #200) with the colloidal Ni solution, followed by solvent removal *in vacuo*. Catalysts were designated as col-Ni/HMS or col-Ni/SiO₂. Conventional impregnation catalysts were also prepared by using Ni(NO₃)₂·6H₂O as Ni precursor (imp-).

Ni *K*-edge EXAFS were collected at PF BL-9C with Si(111) double crystal monochromator in a transmission mode. Curve-fitting analysis of k^3 -weighted EXAFS oscillations in the *k*-space were performed by the program REX2000 (Rigaku Co.). Model parameters for curve-fitting analysis were extracted from bulk Ni.

Results and discussion

Figure 1 shows the Ni *K*-edge XANES for supported Ni catalysts and reference compounds.

Fig. 1. Ni *K*-edge XANES for supported Ni catalysts and reference compounds.

The catalyst has to be treated with hydrogen at 673 K before applying the catalytic reaction. It is demonstrated from XANES (Fig. 1), Ni species on the support were reduced to Ni^0 state after the hydrogen treatment.

Figure 2 shows the FT of Ni *K*-edge EXAFS spectra. Coordination numbers (CNs) for Ni-Ni were listed in Table. The effectiveness to produce the smaller Ni particles can be demonstrated by using Ni colloid as the Ni precursor. Moreover, CN of Ni-Ni for col-Ni/HMS is smaller than that for col-Ni/SiO₂. The smaller Ni particles can be obtained by using Ni colloid and HMS for Ni precursor and the support, respectively.

Fig. 2. FT of k^3 -weighted Ni *K*-edge EXAFS for supported Ni catalysts and reference compounds; (a) Ni foil, (b) col-Ni/HMS, (c) col-Ni/SiO₂, (d) imp-Ni/HMS, (e) imp-Ni/SiO₂ and (f) NiO.

Table:	Curve	fitting	results	for	Ni-Ni	coordination

sample	Ν	<i>r /</i> nm	dE / eV	DW / nm
imp-Ni/SiO ₂	11.6	0.248	-2.0	0.0065
imp-Ni/HMS	9.7	0.248	-1.7	0.0069
col-Ni/SiO ₂	9.1	0.247	-3.4	0.0077
col-Ni/HMS	8.5	0.248	-1.4	0.0065
Ni foil	12	0.249	0.0	0.006

References

[1] P. Gallezot, C. Leclercq, Y. Fort, P. Caubère, *J. Mol. Catal.*, **93**, 79 (1994)

[2] P. T. Tanev, T. J. Pinnavaia, Science, 267, 865 (1995).

* ichikuni@faculty.chiba-u.jp