Crystallography

Interference fringes in Laue diffraction from lateral surface of a bent crystal

Tomoe FUKAMACHI*¹, Masahiko TOHYAMA¹, Kenji HIRANO¹, Masami YOSHIZAWA¹, Dongying JU¹, Riichirou NEGISHI¹, Keiichi HIRANO² and Takaaki KAWAMURA³ ¹Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan ²Institute of Material Structure Science, KEK-PF, High Energy Accelerator Research Organization, Oho, Tukuba, Ibaraki 305-0801, Japan

³University of Yamanashi, Kofu, Yamanashi 400-8510, Japan

Interference fringes in the Laue diffraction from a lateral surface of a Ge single crystal strip in the multiple Bragg-Laue mode were observed by Fukamachi et al., [1,2]. As shown in Fig. 1(a), the fringes are caused by the interference between the internal (refracted) wave excited by the incident X-ray in both the Bragg-Laue case and the Bragg-Bragg-Laue case when the incident beam is regarded as a spherical wave (Hirano et al., [3,4]). The propagating directions of the refracted beams are very sensitive to the crystal distortion. The paths of the refracted beams are of hyperbolic forms in the crystal and the refracted beam S_1 intersects the crystal surface at A_2 as shown in Fig. 1 (b), At A₂, a part of the refracted beams come out of the crystal to produce the mirage peak $P_{\rm m}^{\rm 1}$ [5]. The rest are reflected and reach the lateral surface. In this paper we report on the measurements of various interference fringes due to the mirage effect by using a cantilever device as shown in Fig.2.

The experiments were carried out by using X-rays from synchrotron radiation at a bending-magnet beam line BL-15C, KEK-PF. The X-rays were σ -polarized and were monochromated by using a Si 111 double crystal monochromator. X-ray energy was 11100 eV. The sample was a Si strip, 40 mm long, 10mm wide and 0.108 mm thick. By using 220 reflection, the fringes were measured as indicated by $P_{\rm b}$ in the photographs of Fig. 1(right). Fig. 1 (a) shows the fringes from an unbent crystal and (b) from a bent crystal ($D=20 \ \mu$ m).

Although the fringes in Fig.1 (b) can be seen in the surface side (y = 0), those in Fig.1 (a) cannot be seen. In the photograph of Fig. 1 (a), the weak band indicated by $P_{\rm b}^2$ just above the fringes is the reflected beams from the back surface. In the photograph of Fig. 1(b) (right), the weak band indicated by P_m^1 is the mirage peak.

In the weakly bent crystal, the mirage peak and the interference fringes modified by the mirage effect are measured. The results will be very useful to estimate the weak stress/strain in a single crystal.

This work was partly supported by the "Open Research Center" Project for Private Universities: 2007-2009 matching fund subsidy from MEXT and Grant-in-Aid for Scientific Research (C) (19540344) from MEXT.

P_h and P_h'

Fig. 2. Sample and bending jig geometries.

*tomoe@sit.ac.jp