High Pressure Science

Bulk Moduli of Superconducting filled skutterudites $YT_4P_{12}(T = Fe, Ru \text{ and } Os)$

Junichi HAYASHI^{*1}, Kazuki MATSUI¹, Koujiro ITO¹, Keita AKAHIRA¹, Chihiro SEKINE¹, Ichimin SHIROTANI¹, Takumi KIKEGAWA²

¹ Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan ² KEK-IMSS, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Filled skutterudites $YT_4P_{12}(T=$ Fe, Ru and, Os) have been prepared at high temperatures and high pressures. Electrical and magnetic properties of these compounds have been studied at low temperatures. We have found the superconducting transition at around 7 K for YFe₄P₁₂, 8.5 K for YRu₄P₁₂ and 1.8 K for YOs₄P₁₂ [1-3] In a previous report, we have reported the results of the powder x-ray diffraction study for YFe₄P₁₂ and YOs₄P₁₂ at high pressures. Using synchrotron radiation, we have studied the powder x-ray diffraction for filled skutterudites YRu₄P₁₂ at room temperature and high pressures. The bulk modulus is also obtained from the volume vs. pressure curve fitted by a Birch equation of state.

Experimental

Using a wedge-type cubic-anvil high-pressure apparatus, YT_4P_{12} (*T*= Fe, Ru and Os) were prepared at high temperatures and high pressures. Using synchrotron radiation, powder x-ray diffraction patterns of YT_4P_{12} (*T* = Fe, Ru and Os) were systematically measured with a diamond-anvil cell (DAC) and an imaging plate up to 10 GPa at room temperature. The measurement of the x-ray diffraction was carried out under hydrostatic conditions because the 4:1 methanol-ethanol solution used as pressure medium was solidified at around 10 GPa. Pressure in the DAC was determined from a pressure shift in the sharp R-line fluorescence spectrum of ruby grain.

Results and Discussion

Figure 1 shows the relative cell volume (V/V_0) vs. pressure for YT_4P_{12} (T= Fe, Ru and Os). The cell volume with the skutterudite-type structure monotonically decreases with increasing pressure up to 10 GPa. The compression curve for each skutterudites is fitted by a Birch equation of state. Bulk moduli of YFe_4P_{12} , YFe_4P_{12} and YOs_4P_{12} are 144 ± 2 GPa, 183 ± 4 GPa and 189 ± 4 GPa, respectively. The bulk modulus of YT_4P_{12} (T = Fe, Ru and Os) increases with increasing lattice constant. Figure 2 shows T_c vs. bulk modulus for RT_4P_{12} (R = Laand Y; T = Fe, Ru and Os). The T_c of the superconducting skutteudites is highest for the Ru compounds. However, the Os compounds has the biggest bulk modulus. The linear relation between T_c and bulk modulus is not obtained for the superconducting skutterudites.

Fig. 1 The relative cell volume (V/V_0) vs. pressure curves for YT_4P_{12} (*T* = Fe, Ru and Os).

Fig. 2 T_c vs. bulk modulus for RT_4P_{12} (R = La and Y; T = Fe, Ru and Os).

References

[1] I. Shirotani *et al.*, J. Phys.: Condens. Matter **15** (2003) S2201.

[2] I. Shirotani et al., J. Phys.: Condens. Matter **17** (2005) 4383.

[3] K. Kihou et al., Mater. Res. Bull., 39 (2004) 317.

* hayashi@mmm.muroran-it.ac.jp