An Oblate Shape of Ca²⁺ (and Zn²⁺)-bound S100A3 Homotetramer

Kenji KIZAWA¹, Yuji JINBO², Takafumi INOUE¹, Yoshinobu IZUMI²* ¹Basic Research Laboratory, Kanebo Cosmetics Inc., Odawara 250-0002, Japan ²Graduate School of Science & Eng., Yamagata Univ., Yonezawa, Yamagata 992-8510, Japan

Introduction

S100A3, of which Arg-51 is specifically converted to citrulline by Ca^{2+} -dependent peptidylarginine deiminases (type III), assembles a homotetramer within hair cuticular cells [1]. Its Cys-rich C-terminal domain reported to bind two Zn^{2+} ions [2], however its structural and functional in the Ca^{2+} -dependent tetramerization is still unknown. This study aimed to elucidate Ca^{2+} (and Zn^{2+})-bound tetrameric architecture in solution by small-angle X-ray scattering (SAXS) analyses.

Materials and methods

Dimer to tetramer ratio of S100A3 and R51A (a mutated protein analogous to the citrullinated form), and overall shape in Ca^{2+} (and Zn^{2+})-containing solution were evaluated using the SAXS measurement at BL-10C [3].

Results and discussion

Mol fraction of S100A3/R51A tetramer was calculated from M_w determined by SAXS data with the Guinier approximation. S100A3/R51A dimers converted to tetramers up to ~70% even at 100 mM Ca²⁺. Fluorescent titration revealed that affinities to either Ca²⁺ or Zn²⁺ of S100A3 were mutually increased by the concurrent heterotrophic ion. In the presence of Zn²⁺, R51A more efficiently assembled a homotetramer with 1mM Ca²⁺ [4].

Fig. 1. Kratky plot, $k^2 P(k)$ vs. k, for R51A $P(k)_D$ and $P(k)_{\xi}$ are particle scattering functions for dimer and the mixture in 30 mM CaCl₂. $P(k)_T$ for the tetramer was calculated from $P(k)_D$ and $P(k)_{\zeta}$. Solid lines are theoretical values for an oblate model: $\nu = 0.44$ for $P(k)_D$ and $\nu = 0.39$ for $P(k)_T$

Fig. 2. Overall shape of Ca²⁺-bound R51A homotetramer generated by DAMMIN program ($D_{max} = 78 \text{ Å}$)

Kratky plots of the SAXS data of apo-R51A dimer and Ca²⁺ (and Zn²⁺)-bound R51A tetramer are all reproduced using an oblate model fairly compared with a theoretical curve calculated by the ellipsoidal rotation (Fig. 1). Overall shapes generated by the program DAMMIN (Fig. 2) support our prediction that two S100A3 dimers tightly associate via exposed broad hydrophobic clefts, which is similar to target protein recognition by responsible S100 proteins. Four S100A3 elements reorient their helix III within the tetramer upon Ca²⁺-binding. Molecular modeling by assembling known crystal structures of analogous Ca²⁺-bound S100 proteins (e.g., Protein Data Bank Code 1K9K for S100A6) is in progress. Our finding suggests that the S100A3 tetramer plays important roles in the presumable Ca2+/Zn2+-homeostasis of the hair cuticular maturation.

References

- [1] K. Kizawa et al., J. Biol. Chem. 283, 5004 (2008)
- [2]G. Fritz et al., Biochim.Biophys.Acta. 1448, 264 (1998)
- [3] T. Ueki et al., Biophys. Chem. 23, 115(1985)
- [4] Y. Jinbo et al., 26th PF Symposium abstr. pp 72 (2009)* yizumi@yz.yamagata-u.ac.jp