Real-time observation of film structure using x-ray waveguide phenomenon

Kouichi HAYASHI^{*1}, Wen HU¹, Hisataka TAKENAKA², Kosuke SUZUKI³, Masahisa ITO³ ¹Tohoku University, Aoba-ku, Sendai 980-8577, Japan ² NTT-AT Nanofabrication Co. Atsugi, Kanagawa 243-0124, Japan

³ Gunma University, Kiryu, Gunma 376-8515, Japan

Introduction

We have observed this waveguide phenomenon for n- $C_{33}H_{68}$ and copper phthalocyanine thin films, and pointed out that the energy spectra of the guided x rays through the films using white x-ray beams provide information on the film thicknesses and densities similarly to x-ray reflectivity. In the present study, we used synchrotron radiation white x rays and measured the time dependence of the guided x-rays from the organic thin film.

Experimental procedure

Figure 1 (a) shows the experimental geometry for the observation of the guided x rays and reflected x rays using white x rays. The sample used here was Si/PMMA(polymethyl methacrylate)/Si, which has been studied as a typical planar x-ray waveguide. The PMMA and Si layers were grown by spin-coating and sputtering, respectively. The thicknesses of the Si (2.23 g/cm³) and PMMA (1.19 g/cm³) layers were estimated to be 99.8 nm and 7.2 nm, respectively, using a standard laboratory xray reflectivity apparatus. White x-rays were irradiated on the sample surface under the grazing incidence condition. The energy spectra of the guided x rays were observed by a solid state detector connected with a digital signal processor. The grazing incidence angle ϕ_1 was fixed at 0.177 °. The size of the incident beam was $20 \times 20 \,\mu\text{m}^2$.

Results and discussion

Before the time-resolved measurement, we measured the guided x rays at the x-ray exit angles of . $\phi_2 = -0.05^\circ$, 0.00° and 0.05°. These three spectra are plotted in Fig. 1 (b). Three resonant TE (transverse electric) modes of the guided X-rays were observed and are indicated as TE₀, TE_1 and TE_2 . The energies of the guided x rays of TE_0 , TE₁ and TE₂ were 7.76, 8.40 and 9.23 keV, respectively, and these energies agreed well with the energies calculated using the above mentioned structure parameters of the present sample obtained by the standard x-ray reflectivity. The angular dependence of ϕ_2 on the guided x-ray intensity differed by the TE mode, as shown in Fig.1 (a). Therefore, the peak of the TE_0 mode was observed in the spectrum only at $\phi_2 = 0.00^\circ$, and the peak of the TE₁ mode was observed at $\phi_2 = -0.05$ ° and 0.05 °. The peak of the TE₂ mode is observed at all spectra in Fig. 1 (b). In addition to the guided x-ray peaks, peaks due to x-ray refraction through Si substrate are exhibited in the

spectra, and are indicated by the dashed circle in Fig. 1 (b). The energy of the refraction varies with the change of the ϕ_2 according to Snell's law, unlike the guided x rays whose energies are constant with the ϕ_2 .

After the angular dependence measurements mentioned above, we fixed the detector position at $\phi_2 = 0.00$ ° to obtain the time dependence of the spectra of the guided x rays. Soon after starting the x-ray irradiation on the sample, we recorded the x-ray spectra every 10 sec up to 1400 sec. Figure 1 (c) shows the time dependence of the spectrum of the guided x-rays until 400 sec. The position of the peak of the TE₂ mode gradually varied toward higher energy for first 200 sec, while the position of the peak of the TE_0 mode was mostly unchanged. This indicates that the structure of the PMMA layer changed rapidly just after the x-ray irradiation was started. This structural change was caused by strong synchrotron radiation white x rays.

Fig. 1. (a) Geometry of experimental setup for observation of guided x rays. (b) Spectra of the guided x-rays from Si/PMMA/Si multilayer at $\phi_2 = -0.05^\circ$, 0.00°, 0.05°. (c) Time dependence of the guided x-rays at $\phi_2 = 0.00^\circ$.