Detection of S(IV) Species in Aerosol Particles Using XANES Spectroscopy

-ray absorption near-edge structure spectroscopy (XANES) at sulfur K-edge was measured to quantify S(IV) species in aerosol samples collected at Qingdao in northeastern China. The XANES spectra showed that sulfite was found only in particles with larger diameters (mineral aerosols). No S(IV) species, however, were found at the surface of the aerosols, as shown by surface-sensitive conversion electron/He ion yield XANES. The presence of hannebachite in the interior of aerosols demonstrates the importance of heterogeneous oxidation of SO₂ at the surface of mineral aerosols such as calcite with subsequent oxidation. The chemical process of SO₂ oxidation in the atmosphere and its implications were obtained based on the detection of sulfite species.

Recent atmospheric modeling studies have suggested that aerosol particles play a potentially important role in the chemistry of the troposphere by interacting with anthropogenic gaseous species such as SO₂, NO_x, and NH₂, SO₂ can be oxidized to sulfuric acid and subsequently to various sulfate species in some processes. Such sulfate aerosols greatly influence the radiation balance and climate of the Earth, directly by scattering solar radiation and indirectly by serving as cloud condensation nuclei (CCN) having a cooling effect. Most SO₂ is oxidized to sulfate either in the gas phase by OH radicals or in liquid droplets by ozone and hydrogen peroxide (Fig. 1). Model calculations suggest that aqueous phase oxidation is dominant on a global basis. In addition, heterogeneous uptake of SO₂ on mineral particles such as calcite with subsequent oxidation has

been proposed in recent studies based on laboratory experiments. Although heterogeneous SO_2 oxidation has been suggested in laboratory studies, intermediate S(IV) species which can form during the oxidation of SO_2 to sulfate such as sulfite were not detected in previous studies. Thus, it is important to identify sulfite or other S(IV) species in natural aerosol samples to show that heterogeneous oxidation is actually occurring in natural aerosols. However, it is not easy to detect S(IV)species in natural aerosols because of their instability during analysis by some indirect methods and interference from other species in the samples. Thus, a direct method with high selectivity is essential to identify S(IV)species in natural aerosols such as by X-ray absorption near-edge structure spectroscopy (XANES).

Figure 2 Sulfur K-edge XANES for aerosols of various particle sizes collected in Qingdao in August 2001, measured in FY and CEY modes. The spectra for gypsum and (NH₂)_SO₄ are also shown. The peak position for sulfite species is also indicated.

Sulfur K-edge XANES for size-fractionated aerosol samples (9 fractions) were measured at BL-9A. The spectra showed that the major forms of sulfur in aerosols are sulfate, changing from (NH₄)₂SO₄ to CaSO₄·2H₂O as the particle size increases (Fig. 2). The results are consistent with the fact that aerosol particles are suspended in an oxidative environment including OH, O₃ and H₂O₂. However, a small amount of sulfite species was observed as peaks at lower energy than those for sulfate in XANES spectra (Fig. 2) measured in fluorescence mode (FY). In contrast, sulfite species were not found for the spectra measured in conversionelectron yield mode (CEY). The results showed that sulfite species are mainly in the interior of the particle, which suggests that SO₂ had diffused to the particle interior prior to oxidation to form sulfite. Its stability upon heating to 260°C, its oxidation behavior after dissolution into water, and its presence only in mineral aerosols (coarser particles) indicated that the species is CaSO₃,

hannebachite, formed in calcite. The presence of sulfite in mineral aerosols provides evidence that the oxidation of SO₂ can occur also at the surface of aerosol particles. The contribution of heterogeneous oxidation to the total rate of SO₂ oxidation is not clear at present. However, this study suggests that the adsorption of SO₂ on mineral aerosols without oxidation can reduce the oxidation of SO₂ in the atmosphere, especially in the presence of calcite.

REFERENCES

- Y. Takahashi, Y. Kanai, H. Kamioka, A. Ohta, H. Maruyama, Z. Song and H. Shimizu, *Environ. Sci. Technol.* 40 (2006) 5052.
- M. Higashi and Y. Takahashi, *Environ. Sci. Technol.* 43 (2009) 7357.

BEAMLINE

9A

Y. Takahashi (Hiroshima Univ.)

PF Activity Report 2009 #27

34 Highlights