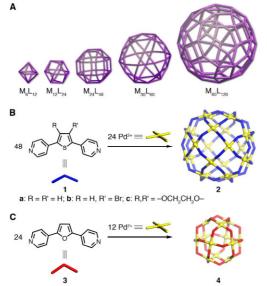
NW2A/2009G502

Self-Assembled M₂₄L₄₈ Complex and Their Sharp Structural Switch

Qing-Fu SUN¹, Junji IWASA¹, Sota SATO¹, Tomoji OZEKI², Yoshihisa SEI³, Kentaro YAMAGUCHI³, Makoto FUJITA^{*1}

¹Department of Applied Chemistry, School of Engineering, The University of Tokyo, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology


Corporation (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

²Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan.

³Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan

Introduction

One of the most challenging targets for chemists to mimic natural super structures is virus capsid assembled from 60T protein subunits, where T = 1, 3, 4, 7, 13, and 16. The possible capsid polyhedral structures are limited by simple geometrical constraints, and similar constraints have been found in artificial multicomponent assemblies. The formation of spherical polyhedra with a formula of $M_{\mu}L_{2\mu}$ is predicted when metal ions (M) with square planar coordination sphere and bent bidentate ligands (L) are mapped onto the vertices and edges, respectively, of the polyhedra, where n = 6, 12, 24, 30, and 60 (Fig. 1A). We have reported the assemblies for n = 6 and 12 but not for larger n. Here, we report the self-assembly of the giant $M_{24}L_{48}$ complex 2 (n = 24) from Pd²⁺ ions and ligand 1 (Fig. 1B) [1, 2]. The formation of this 72-component system is highly sensitive to the ligand geometry. The smaller 36-component $M_{12}L_{24}$ sphere 4 (n = 12) forms when the analogous ligand 3 is employed (Fig. 1C). Systematically varying the mean ligand angle by mixing 1 and 3 in various ratios revealed that even a slight change in the mean bend angle critically switches the final structure between $M_{24}L_{48}$ and $M_{12}L_{24}$ spheres.

Figure 1 Multicomponent assemblies of $M_n L_{2n}$ polyhedra.

Results and Descussions

When ligand **1a** (10 µmol) and Pd(NO₃)₂ (5.0 µmol) were heated in dimethyl sulfoxide- d_6 (DMSO- d_6) (0.7 ml) at 70 °C for 17 h, the M₂₄L₄₈ sphere **2a** was obtained quantitatively. The structure was determined by NMR and high resolution MS, giving over 20,000 Da molecular weight. The crystal structure of **2c** was finally revealed to show a 5 nm diameter rhombicuboctahedron (Fig. 2).

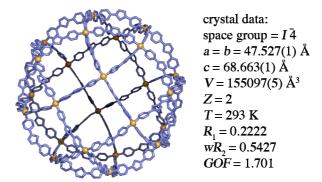


Figure 2 The crystal structure of 2c.

The ratio of ligand **1c** and **3** was varied sequentially from 9:1 to 1:9 and surprisingly only pure $M_{12}L_{24}$ or $M_{24}L_{48}$ was observed exclusively (Table 1). This criticality arises from a multiplicity of simple interactions and presicely controls the final structures.

Table 1 Structural switch by ligand geometry.

1c : 3 ratio (mean angle)	product	5:5 (138.1) $M_{24}L_{48}$ only
10:0(149.3)		$4:6$ (135.9) $M_{24}L_{48}$ only
9 : 1 (147.1) 8 : 2 (144.8)	$M_{24}L_{48}$ only $M_{24}L_{48}$ only	3:7 (133.6) $M_{24}L_{48}$ only 2:8 (131.4) $M_{12}L_{24}$ only
	M ₂₄ L ₄₈ only M ₂₄ L ₄₈ only	1:9 (129.1) $M_{12}L_{24}$ only 0:10 (126.9) $M_{12}L_{24}$ only

References

[1] Q.-F. Sun et al., Science 328, 1144 (2010).

[2] A. R. Stefankiewicz et al., Science 328, 1115 (2010).

* mfujita@appchem.t.u-tokyo.ac.jp