### 7C, 9C/2009G552

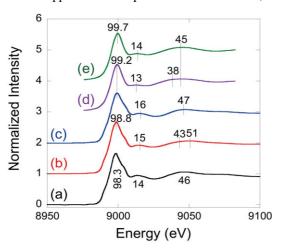
# Role of copper in the CO<sub>2</sub> photo-reduction to fuels using Zn-Cu-Al/Ga layered double hydroxides

Naveed Ahmed and Yasuo Izumi\*

Department of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba 263–8522

#### **Introduction**

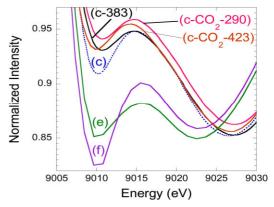
Layered double hydroxides formulated as  $[Zn_{3-x}Cu_{x}M^{III}(OH)_{8}]_{2}(CO_{3})\cdot mH_{2}O$  ( $M^{III} = AI$ , Ga; x = 0 - 1.5) were synthesized and applied to the CO<sub>2</sub> photoconversion to fuels. The interlayer carbonate ions were reduced to methanol under UV-visible light and gaseous CO<sub>2</sub> was further photo-converted to interlayer carbonate-like species and finally to methanol. In this study, the Cu site structure and its photo-catalytic role to produce methanol were investigated using XAFS.


## **Experimental section**

For the synthesis of  $[Zn_3M^{III}(OH)_8]_2(CO_3) \cdot mH_2O$  (M = Al, Ga), a mixed solution of 0.75 M Zn(NO\_3)\_2·6H\_2O and 0.25 M M(NO\_3)\_3·mH\_2O was added to 0.075 M Na<sub>2</sub>CO<sub>3</sub> at 290 K, keeping the pH value 8 by the NaOH addition. It was aged at 353K for 1 d. Obtained precipitates were filtered, washed, and dried. For the synthesis of  $[Zn_{1.5}Cu_{1.5}M^{III}(OH)_8]_2(CO_3) \cdot mH_2O$  (M = Al, Ga), the molar ratio of Zn, Cu, and  $M^{III}$  nitrates was set to 3:3:2 for the initial mixed solution of 0.75 M Zn+Cu nitrates and 0.25 M  $M^{III}$  nitrate.

Zn, Cu and Ga K-edge XAFS measurements were performed at beamline 7C, 9C and 10A in a transmission mode at 30 - 290 K.

#### **Results and Discussion**


In the Cu K-edge XANES for  $[Zn_{1.5}Cu_{1.5}Al(OH)_8]_2(CO_3) \cdot mH_2O$ , an intense peak at 8998.8 eV appeared accompanied with three weak, broad



**Figure 1**. Normalized Cu K-edge XANES for CuO (a),  $[Zn_{15}Cu_{15}Al(OH)_8]_2(CO_3) \cdot mH_2O$  (b),  $[Zn_{15}Cu_{15}Ga(OH)_8]_2(CO_3) \cdot mH_2O$  (c),  $CuZn_{44}Al_{12}(OH)_{72}$ model (d), and  $CuZn_{56}(OH)_{72}$  model (e).

peaks at 9015, 9043, and 9051 eV (Figure 1b). This spectrum pattern resembled well with those of Zn K-edge spectrum for the same sample and of theoretically generated XANES for complete  $O_{h}$  layer structure model  $CuZn_{44}Al_{12}(OH)_{72}$  (spectrum d). In the XANES for  $[Zn_1, Cu_1, Ga(OH)_8]_2(CO_3) \cdot mH_2O$  (spectrum c), a first intense peak at 8999.2 eV and two weak, broad peaks at 9016 and 9047 eV were observed. The pattern resembled well with those of Zn and Ga K-edge spectra for the same sample and of theoretically generated XANES for complete  $O_h$  layer structure model CuZn<sub>56</sub>(OH)<sub>72</sub> (spectrum e). Note that the scattering of photoelectrons should be very similar for  $_{30}$ Zn and  $_{31}$ Ga. Thus. predominant occupation of Cu on the  $O_{i}$  sites in the LDH layers was confirmed.

On heating  $[Zn_1, Cu_1, Ga(OH)_8]_2(CO_3) \cdot mH_2O$  sample, the intensity of post-edge peak at 9016 eV for fresh sample (Figure 2c) decreased (spectrum c-383), suggesting the loss of photoelectron scattering atoms, e.g. interlayer H<sub>2</sub>O molecules and CO<sub>3</sub><sup>2-</sup> ions. This behavior was supported by theoretical calculations of XANES spectra for CuZn<sub>56</sub>(OH)<sub>72</sub>·38H<sub>2</sub>O model and corresponding model to lose all of interlayer water molecules by FEFF 8.4 (Figure  $2f \rightarrow e$ ). Upon introduction of CO, to 383 Kheated sample, the peak intensity increased back (spectrum c-CO<sub>2</sub>-290, c-CO<sub>2</sub>-423). This reversible trend was observed only for LDH samples containing the Cu sites in the layers, not for  $[Zn_{a}Al(OH)_{a}]_{a}(CO_{a})\cdot mH_{a}O$  or  $[Zn_3Ga(OH)_8]_2(CO_3) \cdot mH_3O$ . Thus, the Cu sites act to bind CO, molecules and lead to photo-catalytically reduce to methanol.



**Figure 2.** Normalized Cu K-edge XANES of  $[Zn_{1.5}Cu_{1.5}Ga(OH)_8]_2(CO_3) \cdot mH_2O$ . Fresh sample (c), heated at 383 K (c-383), c-383 in CO<sub>2</sub> at 290 K (c-CO<sub>2</sub>-290) or 423 K (c-CO<sub>2</sub>-423), CuZn<sub>56</sub>(OH)<sub>72</sub> model (e), and CuZn<sub>56</sub>(OH)<sub>72</sub> 38H<sub>2</sub>O model (f).

\*yizumi@faculty.chiba-u.jp