XAFS study on mesoporous Cr and Ti mixed oxides prepared by wall ion exchange method

Insuhk SUH, Masashi TANAKA, Fumitaka HAYASHI, Masakazu IWAMOTO* Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Introduction

Through the wall ion exchange (WIE) method, sulfate anions in hexagonally mesostructured titanium oxysulfate (TS) are readily exchanged with several oxyanions of P, As, Se, and Cr in aqueous solutions [1]. Recently, we found that the Cr-exchanged TS (Cr-TS) exhibited ordered pore structure and high surface area upon calcination. The surface area of the Cr-TS gradually increased with increasing the Cr content in the range of 0.54-1.29 mmol g⁻¹ of Cr. The maximum surface areas were 400 m² g⁻¹ or more at 1.29-1.67 mmol g⁻¹. In this work, to elucidate the formation mechanism of mesoporous structure, the states of chromium on Cr-TS were investigated by using XAFS spectroscopy.

Experimental

Parent TS was prepared by the reported manner [2]. The chemical composition of TS is $TiO(HSO_4)_{0.7}(OH)_{1.9}$ (C₁₉H₄₂N)_{0.6}·H₂O. The WIE was performed at room temperature in an aqueous solution of K₂CrO₄ at weak basic condition (pH=8.6). The TS was added into the solution, stirred for 2 h, filtered, and dried at 353 K. The Cr-TS were calcined at 673 K for 2 h in air. The XAFS spectra of Cr K-edge were recorded on beam line 9C of PF-KEK.

Results and discussion

Figure 1 shows the XANES spectra of Cr reference compounds and various Cr-TS samples. A sharp peak at 5993 eV was observed for all ion-exchanged Cr-TS samples. This peak is ascribed to Cr(VI) in tetrahedral geometry [3]. The spectra of Cr-TS were similar to that of $K_2Cr_2O_7$ rather than that of K_2CrO_4 . On the basis of this result, we could consider that the tetrahedral Cr ions dimerized during ion exchange to form $Cr_2O_7^{2^{-2}}$ species. After calcination (Figure 1b), a peak at 6010 eV assigned to Cr(III) appeared. It should be noted that Cr-TS samples with 0.74 and 1.67 mmol g⁻¹ of Cr also exhibited a sharp peak of Cr(VI) at 5993 eV. Therefore, it was suggested that the formation of mesoporous structure of Cr-TS was dependent on the amount of Cr(VI).

The Fourier transform of k^3 -weighted EXAFS spectrum for each Cr-TS sample is shown in Figure 2. A band at 1.24 Å due to Cr-O bond of tetrahedron CrO_4 appeared on the spectra of all ion-exchanged Cr-TS samples (Figure 2a), which were similar to those of $K_2\text{CrO}_4$ and $K_2\text{Cr}_2\text{O}_7$. In contrast, the spectra of calcined Cr-TS showed two bands at 1.50 and 2.40 Å. These bands were reported to be due to Cr-O and Cr-Cr bond of Cr₂O₃, respectively [4]. However, the magnitude of second band at 2.40 Å was weak for calcined Cr-TS, indicating that Cr species were highly dispersed. The preedge peak of Cr(VI) was observed on the spectra of calcined Cr-TS with 0.74 and 1.67 mmol g^{-1} (Figure 1b) but the band of Cr-O in CrO₃ was not appeared at near 1.0 Å (Figure 2b), which were not understood yet.

In summary, introduced Cr ions in Cr-TS existed as $Cr_2O_7^{2^{-2}}$ species and part of those were converted into Cr_2O_3 -like species upon calcination. The amount of remained Cr(VI) was correlated with the formation of mesoporous structure of Cr-TS. Additional study is needed to elucidate the effect of Cr species on the formation of mesoporous structures.

Figure 1: XANES spectra of Cr-TS. (a) ion exchanged and (b) calcined.

Figure 2: Fourier transforms of k-weighted EXAFS spectra of Cr-TS. (a) ion exchanged and (b) calcined.

References

- [1] H. Takada and M. Iwamoto, Ryusan to Kogyo 58, 29 (2005).
- [2] M. Linden et al., Chem. Mater. 11, 3002 (1999).
- [3] J. A. Bardwell et al., J. Electrochem. Soc. 139, 371 (1992).
- [4] S. Ohyama and H. Kishida, Appl. Catal. A 184, 239 (1999).
- * iwamoto@res.titech.ac.jp