PTRF-XAFS analysis of structure of Au₁₁ cluster on TiO₂(110) Surface

Satoru TAKAKUSAGI¹, Kotaro MIYAZAKI², Hirotaka NOJIMA², Takahiro WADA², Hiroko ARIGA¹, Wang-Jae CHUN³, Masaharu NOMURA⁴,

Kiyotaka ASAKURA¹ and Yasuhiro IWASAWA⁵

¹Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, ²Department of Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan, ³Chemistry Department, International Christian University, Mitaka 181-8585, Tokyo, Japan, ⁴Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801, Japan, ⁵Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan

Introduction

Gold nanoclusters on TiO_2 with less than 10 nm have attracted much attention as active catalysts towards CO oxidation reactions at low temperature.[1] Recent studies showed that sub-nanometer-sized Au clusters also work as highly active catalysts for CO oxidation[2] and O₂ electroreduction.[3]

Here, Au_{11} clusters $(Au_{11}(PPh_3)_8Cl_3)$ with well-defined composition and structure were deposited on $TiO_2(110)$ surface using a wet-chemical method, and the structure of the deposited Au clusters was examined by using polarization dependent total-reflection fluorescence (PTRF) XAFS.

Experimental

Nb doped (0.05wt%) TiO₂(110) surface was cleaned by HF etching and annealing in air at 1000 K. The cleaned surface was immersed in 1mM p-mercaptobenzoic acid (MBA) to modify the TiO₂(110) surface with p-MBA monolayer. The modified surface was then immersed in dichloromethane solution containing 50 μM [Au₁₁(PPh₂)_sCl₂]Cl. Adsorption of the Au clusters was confirmed by the existence of the Au4f peak in the XPS measurements. The Au coverage was 0.3 ML~1.6ML depending on immersion time. PTRF-XAFS measurements were carried out at BL9A with in-situ PTRF-XAFS chamber (base pressure 8×10^8 Pa). No coverage dependence of the PTRF-XAFS spectra was observed. XAFS analysis was carried out using REX2000 and FEFF8.40.

Results and Discussion

Fig. 1(a)-(c) show the observed Au L_3 -edge PTRF-EXAFS spectra of the deposited Au clusters on TiO₂(110) surface premodified with *p*-MBA. No significant polarization dependence was observed. The amplitude of the EXAFS oscillations of the Au₁₁ clusters on *p*-MBA/TiO₂(110) was almost equal to that of Au₁₁ powder sample, suggesting that Au₁₁ clusters maintain the number of Au atoms after the surface attachment. However the periodicity of the EXAFS oscillations was shorter. The preliminary curve fitting analysis showed that the average Au-Au bond distance of the deposited Au clusters was 2.80 Å, which was longer by ca 0.1 Å than that of the Au₁₁ powder (2.68Å) and shorter than that of bulk Au-Au (2.88Å).

FEFF calculation was performed to determine a more detailed structure of the deposited Au clusters. We were not able to reproduce the observed spectra when using structural models based on simple expansion of Au-Au bond of the original Au_{11} structure determined by single crystal XRD analysis. On the other hand, a well-fitted result was obtained when structure of the Au_{11} core was relaxed and optimized by using DFT calculation after removing some of the ligands, as shown in Fig. 2. This suggests that surface attachment of the Au_{11} clusters causes removal of some protecting ligands and structural change of the Au_{11} core probably due to chemical interaction with thiol group of the adsorbed *p*-MBA on TiO₂(110) surface.

Fig. 2 FEFF calculation of a modified Au₁₁ structure.

<u>References</u>

- (1) M. Haruta, Catal. Surveys Jpn. 1 (1997) 61.
- (2) Herzing et al., *Science* **321** (2008) 1331.
- (3) Chen et al., Angew. Chem. Int. Ed. 48 (2009) 4386.

* takakusa@cat.hokudai.ac.jp