Evaluation of spin, orbital and total magnetic moments of Pd$_3$Co by X-ray magnetic diffraction

Ayako SATO1, Yoshiaki OBA1, Kosuke SUZUKI1, Ryouta NAGAYASU1, Hiroshi SAKURA1, Hiromichi ADACHI1, Keichi HIRANO2, and Masahisa ITO*

1Graduate School of Eng., Gunma Univ., Tenjin-cho 1-5-1, Kiryu, Gunma 376-8515, Japan
2KEK-PF, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan

Introduction

It is known that artificial-lattice multilayer Pd/Co shows perpendicular magnetic anisotropy. Wavefunctions of Pd-4d and Co-3d electrons may play a key role for the magnetic property. The aim of the present study is to examine magnetic properties of Pd-Co alloy system. We measure the spin and orbital magnetic form factor of Pd$_3$Co single crystal by the X-ray magnetic diffraction (XMD) experimental technique.

Pd$_3$Co belongs to the alloy group of Cu$_3$Au type crystal structure that exhibits order-disorder phase transition. The sample crystal in the present study is revealed to be in the disorder state by the preliminary X-ray diffraction experiment.

Experiments

The XMD experiment was made on the beamline 3C. Elliptically polarized white X-rays were irradiated on the crystal and the X-ray intensities diffracted with 90º scattering angle were measured with a pure-Ge SSD. Magnetic field was applied to the sample crystal with an electromagnet that produced 2.15T.

By setting the angle α between the incident X-ray direction and the sample magnetization to 0º and 135º we measured the spin and orbital magnetic form factor ($\mu_S(k)$ and $\mu_L(k)$), respectively.

Results and Discussion

Observed spin and orbital magnetic form factors for 22 reciprocal lattice points are shown in Fig. 1 and Fig. 2, respectively. Those form factors were fitted with theoretical values of $<j_0>$ and $<j_2>$ for Co-3d orbital and Pd-4d orbital under the dipole approximation tabulated in the literature.11 Here, $<j_n>$ is the radial integral of the wavefunction of 3d or 4d orbital multiplied with the n-th spherical Bessel function. We used those values for Co$^+$ and Pd$^{4+}$ ions on trial.

The fitting procedure has resulted in the following values. As shown in Fig. 1, the spin moments of Co and Pd per formula unit (Pd$_3$Co) are 1.57μ_B and 0.62μ_B, respectively. As shown in Fig. 2, the orbital moments of Co and Pd per formula unit are 0.71μ_B and 0.12μ_B, respectively. Total spin moment is 2.19μ_B/f.u. and the total orbital moment is 0.83μ_B/f.u. Then the total magnetic moment is obtained as 3.02μ_B/f.u.

As a result, we have succeeded in obtaining the values of spin, orbital and the total magnetic moments of Pd$_3$Co by the X-ray magnetic diffraction experiment. In the near future we have a plan to study distribution of the spin, orbital and the total magnetic moments in real space by using Fourier transform of these form factors.

![Fig. 1 Spin magnetic factor](image1)

![Fig. 2 Orbital magnetic factor](image2)

Reference

*Present address: School of General Education, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan.

*itom@phys.sci.gunma-u.ac.jp