Transport properties and chemical state of fluorine in anatase $TiO_{2}F_{x}$ epitaxial thin films

Satoru MOHRI¹, Yasushi HIROSE^{*1,2}, Akira CHIKAMATSU¹, Shoichiro NAKAO², Naoomi YAMADA², Toshihiro SHIMADA^{1,2}, Hiroshi KUMIGASHIRA³, Masaharu OSHIMA³Tetsuya HASEGAWA^{1,2} ¹Department of Chemistry, Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ²KAST, Sakado, Takatsu-ku, Kawasaki 213-0012, Japan ³Department of Applied Chemistry, Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Introduction

It is reported that anatase TiO₂ shows high conductivity and good transparency by the substitution of pentavalent cations such as Nb⁵⁺ or Ta⁵⁺ for tetravalent Ti⁴⁺ ions [1, 2]. In this study, we focused on monovalent fluorine anion, F, as a new electron donor. F is known to work as a good electron donor in conventional transparent oxides such as ZnO or SnO₂ by substituting O²⁻ site. On the other hand, there is no report on the electrical properties of F-doped TiO₂. Therefore, we fabricated anatase TiO_{2-x}F_x epitaxial films and clarify its transport property and chemical state of fluorine in detail.

Experiments

Anatase TiO_{2-x} F_x thin epitaxial films were grown by using reactive pulsed laser deposition method. A pellet of TiF₃ was ablated by Kr:F excimer laser under oxygen atmosphere. LaSrAlO₄ (LSAO) (001) single crystals were used as substrates. Thin undoped anatase TiO₂ films were epitaxially grown on the substrates as buffer layers before the ablation of TiF₃ targets. Oxygen partial pressure (P_{02}) and substrate temperature (*T*s) during the deposition were optimized as growth parameters.

The crystal structures of the films were determined by X-ray diffraction (XRD) measurements. The transport properties of the $TiO_{2x}F_x$ films were evaluated by 4-probe resistance and Hall measurements. We also conducted XPS measurements at BL-2C of the Photon Factory, KEK.

Results and Discussion

The XRD spectra of the films showed that under the optimized condition of $P_{02} = 1 \times 10^{-5}$ Torr and $T_s = 400 - 500$ °C, (001)-oriented anatase TiO_{2-x}F_x grew epitaxially without any impurity phases.

In addition, the resistivity of the film at room temperature reached as low as $1.6 \times 10^3 \Omega$ cm under the growth condition of $T_s = 400^{\circ}$ C. The Hall effect measurements revealed that electron density of the film was 5 x 10^{20} cm³, which is an order of magnitude higher than the value of undoped anatase TiO₂ films. This high density of electron strongly indicates that F ions are successfully doped at O²⁻ sites in anatase TiO₂ and release carrier electrons.

On the other hand, fluorine doped in oxides is volatile at high temperature. Therefore, it should be checked whether F ions really exists in our films. In order to confirm the existence of fluorine, we conducted XPS measurements. Figure 1 shows the F 1s core level spectrum of the $TiO_{2x}F_x$ thin film grown under optimized condition. A clear F 1s peak was observed in the spectrum, which definitely indicates that F is doped in the film.

We also discussed about chemical shift of the F 1*s* peak. It is reported that F ions which substitute O^{2-} sites and those which compose minute secondary phases, such as TiOF₂, shows different values of chemical shifts [3]. The observed F 1*s* spectrum consists of single peak. Therefore, we concluded that the fluorine ions of our films have only one chemical state at least at the surface of the film.

Fig. 1: F 1s core level spectrum of $TiO_{2-x}F_x$ film

References

[1] Y. Furubayashi et al., App. Phys. Lett. 25, 252101 (2005).

[2] T. Hitosugi et al., Jpn. J. App. Phys. 44, L1063 (2005).

[3] D. Li et al., J. Fluorine Chem. 126, 69 (2005).

* hirose@chem.s.u-tokyo.ac.jp