Fermi surface of iron-based superconductor Ba(Fe_{2-x}Ni_x)As₂ observed by angle-resolved photoemission spectroscopy

Shin-ichiro IDETA*¹, Teppei YOSHIDA^{1,4}, Ichiro Nishi¹, Atsushi FUJIMORI¹, Yoshinori Kotani², Masato KUBOTA², Kanta ONO², Yuji Nakajima³, Takao Sasagawa^{3,4} ¹Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-0022, Japan ²Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801, Japan ³ Materials and Structures Laboratory, Tokyo Institute of Technology, Meguro-ku,

Tokyo 152-8550, Japan

⁴JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075

Introduction

Recently, the iron-based superconductor LaFeAsO_{1-x} F_x ($T_c = 26$ K) has been discovered [1] and the highest T_c of this system is ~ 55 K. The electronic structures of these compounds have been investigated by angle-resolved photoemission spectroscopy (ARPES) to elucidate the mechanism of superconductivity [2, 3].

Ba(Fe_{2-x}Ni_x)As₂ which is electron doped iron-based superconductor shows superconductivity below $T_c \sim 18$ K [4] at the optimally doping region. Recently, photonenergy dependence of ARPES spectra has been reported and revealed strong k_z dispersion of the electronic structure [5].

Here, we report the results of ARPES measurements of underdoped Ba(Fe_{2-x}Ni_x)As₂, x = 0.075 and shows Fermi surfaces (FSs) taken at $h\nu = 78$ and 60 eV, corresponding to the Γ and Z points.

Experimental Condition

Single crystals of underdoped Ba(Fe_{1.925}Ni_{0.075})As₂, ($T_c \sim 16$ K) were prepared by by a self-flux method. ARPES experiments were carried out using a SES-2002 analyzer at BL 28A. Measurements were performed at $T \sim 9$ K and photon-energy was set at hv = 78 and 60 eV.

Results and Discussion

Figure 1 shows FSs of Ba(Fe_{1.925}Ni_{0.075})As₂ using $h\nu$ = 78 and 60 eV and $T \sim 9$ K. The observed FSs around the Γ (Z) and X points show hole and electron FSs, respectively. FS area of hole FS taken at different photon energies shows large difference between them. This means that Nidoped BaFe₂As₂ also has strong three dimensionality as reported in previous work [5].

References

[1] Y. Kamihara *et al.*, J. Am. Chem. Soc. **130**, 3296 (2008).

[2] D. H. Lu et al., Nature 455, 81 (2008).

[3] T. Kondo et al., Phys. Rev. Lett. 101, 147003 (2008)

[4] P. C. Canfield *et al.*, Phys. Rev. B **80**, 060501(R) (2009).

[5] W. Malaeb *et al.*, J. Phys. Soc. Jpn. **78**, 123706 (2009).

*ideta@wyvern.phys.s.u-tokyo.acjp

Figure 1: ARPES-intensity plots of $BaFe_{1.925}Ni_{0.075}As_2$ ($T_c = 16$ K) taken at $h\nu = 78$ and 60 eV and T = 9 K. (a), (b): Hole and electron Fermi surfaces have been observed around the Γ (Z) and X points, respectively. Hole Fermi surface taken at $h\nu = 78$ eV almost disappears due to the k_i dispersion of the hole band.