Electronic Structure of Condensed Matter

Observation of three-dimensional Fermi surfaces in the iron pnictides superconductor BaFe₂(As_{1,2}P₂),

Teppei YOSHIDA^{1,2}, Ichiro NISHI¹, Shin-ichiro IDETA¹, Atsushi FUJIMORI¹,², Masato KUBOTA³,

Kanta ONO³, Shigeru KASAHARA⁴, Takasada SHIBAUCHI⁵, Takahito TERASHIMA⁴,

Yuji MATSUDA⁵, Hiroaki IKEDA⁵ and Ryotaro ARITA⁶

¹Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

²JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan

³KEK, Photon Factory, Tsukuba, Ibaraki 305-0801, Japan

⁴Research Center for Low Temperature and Materials Sciences,

Kyoto University, Kyoto 606-8502, Japan

⁵Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁶Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8561, Japan

Introduction

Symmetry of the superconducting order parameter is crucial information for understanding the mechanism of Cooper pairing in the novel superconductors. Most of the experimental results on Fe-pnictide superconductors indicate that the superconducting gaps open on the entire Fermi surface [1], in contrast to the *d*-wave gap in the high- T_c cuprate superconductors. However, recent studies of BaFe₂(As_{1,x}P_x)₂[2] show signatures of superconducting gap with line nodes in penetration depth, thermal conductivity [3], and NMR [4] results. In BaFe₂(As_{1-x}P_x)₂, the substitution of P for As suppresses magnetic order and induces superconductivity with maximum $T_c \sim 30$ K at $x \sim 0.3$. Isovalent substitution gives a good opportunity to reveal the character of the superconducting states, because one can produce the superconducting states without changing the number of Fe 3d electrons. Here, we expect that the shape of Fermi surfaces become more three-dimensional compared to nondoped BaFe₂As₂ because the inter-layer hopping would increase with P substitution. Therefore, it would be interesting to reveal the three dimensional electronic structure of this system. In order to clarify the three-dimensional electronic structure, we have performed an angle-resolved photoemission study of optimally doped $BaFe_2(As_{1,x}P_x)_2$ with *x* ~ 0.38.

Experimental condition

High-quality single crystals of the BaFe₂(As_{1-x}P_x)₂ with x=0.38 ($T_c = 30$ K) were grown using the flux method. ARPES measurements were carried out at BL-28A using a circularly-polarized light with photon energies ranging between 46 and 67eV. A Scienta SES-2002 analyzer was used with a total energy resolution of ~15 meV and a momentum resolution of ~ 0.02 π/a , where a = 3.92 Å is the in-plane lattice constant. The crystals were cleaved *in situ* at T=10 K in an ultra-high vacuum ~5×10⁻¹¹ Torr. Calibration of the Fermi level (E_F) of the samples was achieved by referring to that of gold.

Result and Discussion

Results of Fermi surface (FS) mapping in the k_x - k_y plane are shown in Fig. 1 (a) and (b). Intensity mapping for the hole FSs were performed at hv=46 eV ($k_z \sim \Gamma$) and 63 eV ($k_z \sim Z$), while the electron FS around X point were taken at hv=67 eV ($k_z \sim Z$) and 52 eV ($k_z \sim \Gamma$). By assuming an inner potential V₀=13.5 eV, panels (a) and (b) approximately correspond to the k_x - k_y plane including the Z and the Γ point, respectively. We have observed at least two hole FS sheets around the Brillouin zone (BZ) center, and two electron FSs around BZ corner. While the outer hole FS around the Z point has nearly circular shape with Fermi momentum $k_F \sim 0.5(\pi/a)$, the hole FS around Γ shows smaller $k_F \sim 0.25(\pi/a)$. This indicates that the hole FS has strong three-dimensionality as expected from the large inter-layer hopping caused by P substitution.

Fig. 1: Fermi surface mapping of $BaFe_2(As_{1,x}P_x)_2$ in the k_x - k_y plane. The ARPES intensity has been integrated over 10 meV around E_F . Panels (a) and (b) correspond to the $k_z \sim Z$ and $k_z \sim \Gamma$, respectively.

References

- [1] H. Ding et al., Europhys. Lett. 83, 47001 (2008).
- [2] S. Kasahara et al., Phys. Rev. B 81, 184519 (2010).
- [3] K. Hashimoto et al., arXiv:0907.4399.
- [4] Y. Nakai et al., Phys. Rev. B 81, 020503 (2010).

*yoshida@wyvern.phys.s.u-tokyo.ac.jp